Longitudinal Risk Analysis of Second Primary Cancer after Curative Treatment in Patients with Rectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Study Population
2.3. The Evidence-Based Clinical Decision-Making Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Gollins, S.; Sebag-Montefiore, D. Neoadjuvant Treatment Strategies for Locally Advanced Rectal Cancer. Clin. Oncol. 2016, 28, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Capdevila, J.; Laquente, B.; Manzano, J.L.; Pericay, C.; Villacampa, M.M.; López, C.; Losa, F.; Safont, M.J.; Gómez, A.; et al. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: Clinical and biological features. BMC Cancer 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Bando, H.; Tsukada, Y.; Ito, M.; Yoshino, T. Novel Immunological Approaches in the Treatment of Locally Advanced Rectal Cancer. Clin. Color. Cancer 2022, 21, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lemmens, V.E.; De Hingh, I.H.; de Vries, E.; Roukema, J.A.M.; van Leerdam, M.E.; Coebergh, J.W.M.; Soerjomataram, I.M. Second primary cancers in subsites of colon and rectum in patients with previous colorectal cancer. Dis. Colon. Rectum 2013, 56, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xiong, Z.; Xie, Q.K.; He, W.; Liu, S.; Kong, P.; Jiang, C.; Xia, X.; Xia, L. Second primary colorectal cancer after the initial primary colorectal cancer. BMC Cancer 2018, 18, 931. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Han, B.; Zhang, H.; Liu, H.; Zhang, F.; Niu, R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma. Onco Targets Ther. 2021, 14, 2259–2277. [Google Scholar] [CrossRef]
- Robertson, D.; Ng, S.K.; Baade, P.D.; Lam, A.K. Risk of extracolonic second primary cancers following a primary colorectal cancer: A systematic review and meta-analysis. Int. J. Color. Dis. 2022, 37, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Green, R.J.; Metlay, J.P.; Propert, K.; Catalano, P.J.; Macdonald, J.S.; Mayer, R.J.; Haller, D.G. Surveillance for second primary colorectal cancer after adjuvant chemotherapy: An analysis of Intergroup 0089. Ann. Intern. Med. 2002, 136, 261–269. [Google Scholar] [CrossRef]
- Kendal, W.S.; Nicholas, G. A population-based analysis of second primary cancers after irradiation for rectal cancer. Am. J. Clin. Oncol. 2007, 30, 333–339. [Google Scholar] [CrossRef]
- Lee, H.C.; Lin, T.C.; Chang, C.C.; Lu, Y.C.A.; Lee, C.M.; Purevdorj, B. Clinical Risk Factor Prediction for Second Primary Skin Cancer: A Hospital-Based Cancer Registry Study. Appl. Sci. 2022, 12, 12520. [Google Scholar] [CrossRef]
- Chang, C.C.; Huang, T.H.; Shueng, P.W.; Chen, S.H.; Chen, C.C.; Lu, C.J.; Tseng, Y.J. Developing a Stacked Ensemble-Based Classification Scheme to Predict Second Primary Cancers in Head and Neck Cancer Survivors. Int. J. Environ. Res. Public. Health 2021, 18, 12499. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.H.; Chang, C.C.; Wang, Y.X.; Cheewakriangkrai, C. Predicting the risk factors of second primary cancer in patients with hepatocellular carcinoma. Stud. Health Technol. Inform. 2022, 289, 93–96. [Google Scholar] [PubMed]
- Chang, C.C.; Chen, C.C.; Cheewakriangkrai, C.; Chen, Y.C.; Yang, S.F. Risk Prediction of Second Primary Endometrial Cancer in Obese Women: A Hospital-Based Cancer Registry Study. Int. J. Environ. Res. Public. Health 2021, 18, 8997. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.C.; Chang, H.R.; Chang, C.C.; Lu, C.J. Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Colorectal Cancer Survivors. Appl. Sci. 2020, 10, 1355. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, S.H. Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors. Front. Genet. 2019, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.H.; Dubchak, I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001, 17, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef]
- Pham, T.H.; Vicnesh, J.; Wei, J.K.E.; Oh, S.L.; Arunkumar, N.; Abdulhay, E.W.; Ciaccio, E.J.; Acharya, U.R. Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals. Int. J. Environ. Res. Public. Health 2020, 17, 971. [Google Scholar] [CrossRef]
- Witjes, H.; Rijpkema, M.; van der Graaf, M.; Melssen, W.; Heerschap, A.; Buydens, L. Multispectral magnetic resonance image analysis using principal component and linear discriminant analysis. J. Magn. Reson. Imaging 2003, 17, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A. An introduction to logistic regression: From basic concepts to interpretation with particular attention to nursing domain. J. Korean Acad. Nurs. 2013, 43, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Dima, S.; Wang, K.J.; Chen, K.H.; Huang, Y.-K.; Chang, W.-J.; Lee, S.-Y.; Teng, N.-C. Decision Tree Approach to the Impact of Parents’ Oral Health on Dental Caries Experience in Children: A Cross-Sectional Study. Int. J. Environ. Res. Public. Health 2018, 15, 692. [Google Scholar] [CrossRef]
- Ai, D.; Pan, H.; Han, R.; Li, X.; Liu, G.; Xia, L.C. Using Decision Tree Aggregation with Random Forest Model to Identify Gut Microbes Associated with Colorectal Cancer. Genes 2019, 10, 112. [Google Scholar] [CrossRef]
- Peng, J.; Chen, C.; Zhou, M.; Xie, X.; Zhou, Y.; Luo, C.H. A Machine-learning Approach to Forecast Aggravation Risk in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Clinical Indicators. Sci. Rep. 2020, 10, 3118. [Google Scholar] [CrossRef]
- Yang, C.C.; Su, Y.C.; Lin, Y.W.; Huang, C.I.; Lee, C.C. Differential impact of age on survival in head and neck cancer according to classic Cox regression and decision tree analysis. Clin. Otolaryngol. 2019, 44, 244–253. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, K.; Zheng, X.; Sun, L.; Shen, M.; Ruan, S. Risk of Second Primary Malignancies in Colon Cancer Patients Treated With Colectomy. Front. Oncol. 2020, 10, 1154. [Google Scholar] [CrossRef]
- Phipps, A.I.; Chan, A.T.; Ogino, S. Anatomic subsite of primary colorectal cancer and subsequent risk and distribution of second cancers. Cancer 2013, 119, 3140–3147. [Google Scholar] [CrossRef] [PubMed]
- Papaccio, F.; Rosello, S.; Huerta, M.; Gambardella, V.; Tarazona, N.; Fleitas, T.; Roda, D.; Cervantes, A. Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Cancers 2020, 12, 3611. [Google Scholar] [CrossRef]
- Kim, J.K.; Marco, M.R.; Roxburgh, C.S.D.; Chen, C.-T.; Cercek, A.; Strombom, P.; Temple, L.K.F.; Nash, G.M.; Guillem, J.G.; Paty, P.B.; et al. Survival After Induction Chemotherapy and Chemoradiation Versus Chemoradiation and Adjuvant Chemotherapy for Locally Advanced Rectal Cancer. Oncologist 2022, 27, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.H.; Liu, C.J.; Teng, C.J.; Hu, Y.-W.; Yeh, C.-M.; Chen, S.-C.; Chien, S.-H.; Hung, Y.-P.; Shen, C.-C.; Chen, T.-J.; et al. Risk of Second Non-Breast Primary Cancer in Male and Female Breast Cancer Patients: A Population-Based Cohort Study. PLoS ONE 2016, 11, e0148597. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, A.J.M.; Hugen, N.; Elferink, M.A.G.; Feuth, T.; Poortmans, P.M.P.; Nagtegaal, I.D.; de Wilt, J.H.W. Incidence of second tumors after treatment with or without radiation for rectal cancer. Ann. Oncol. 2017, 28, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, A.J.M.; Hugen, N.; Elferink, M.A.G.; Poortmans, P.M.P.; Nagtegaal, I.D.; de Wilt, J.H.W. Increased risk for second primary rectal cancer after pelvic radiation therapy. Eur. J. Cancer 2020, 124, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Wiltink, L.M.; Nout, R.A.; Fiocco, M.; Kranenbarg, E.M.-K.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Nagtegaal, I.D.; Rutten, H.J.; van de Velde, C.J.; Creutzberg, C.L.; et al. No Increased Risk of Second Cancer After Radiotherapy in Patients Treated for Rectal or Endometrial Cancer in the Randomized TME, PORTEC-1, and PORTEC-2 Trials. J. Clin. Oncol. 2015, 33, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Warschkow, R.; Guller, U.; Cerny, T.; Schmied, B.M.; Plasswilm, L.; Putora, P.M. Secondary malignancies after rectal cancer resection with and without radiation therapy: A propensity-adjusted, population-based SEER analysis. Radiother. Oncol. 2017, 123, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G. Immunosenescence and cancer. Biogerontology 2017, 18, 717–721. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, Bonn, Germany, 7–11 August 2005; pp. 625–632. [Google Scholar]
Risk Factors | With SPCs (%) | Without SPCs (%) | p-Value | χ2 | Odds Ratio |
---|---|---|---|---|---|
n (%) | 395 (9.0%) | 4007 (91.0%) | |||
Sex | 395 | 4007 | 0.004 * | 8.477 | |
Male | 276 (69.9%) | 2503 (62.5%) | 1.394 * [1.114–1.744] | ||
Female | 119 (30.1%) | 1504 (37.5%) | 1.00 | ||
Age at Diagnosis | 395 | 4007 | <0.001 *** | 25.530 | |
<65 years | 174 (44.1%) | 2295 (57.3%) | 1.00 | ||
≥65 years | 221 (55.9%) | 1712 (42.7%) | 1.703 * [1.383–2.097] | ||
Tumor size | 395 | 4007 | 0.433 | 0.614 | |
<5 cm | 267 (67.6%) | 2630 (65.6%) | 1.092 [0.876–1.362] | ||
≥5 cm | 128 (32.4%) | 1377 (34.4%) | 1.00 | ||
Combine Stage Group | 395 | 4007 | 0.001 ** | 11.942 | |
≤stage II | 212 (53.7%) | 1787 (44.6%) | 1.439 * [1.170–1.771] | ||
>stage II | 183 (46.3%) | 2220 (55.4%) | 1.00 | ||
Radiotherapy | 395 | 4007 | 0.013 * | 6.208 | |
No | 279 (70.6%) | 2579 (64.4%) | 1.332 * [1.062–1.669] | ||
Yes | 116 (29.4%) | 1428 (35.6%) | 1.00 | ||
Chemotherapy | 395 | 4007 | <0.001 *** | 20.410 | |
No | 190 (48.1%) | 1465 (36.6%) | 1.608 * [1.307–1.979] | ||
Yes | 205 (51.9%) | 2542 (63.4%) | 1.00 | ||
BMI | 395 | 4007 | 0.019 * | 5.474 | |
<24 | 179 (45.3%) | 2063 (51.5%) | 1.00 | ||
≥24 | 216 (54.7%) | 1944 (48.5%) | 1.281 * [1.041–1.576] | ||
Smoking Behavior | 395 | 4007 | <0.001 *** | 12.882 | |
No | 229 (58.0%) | 2682 (66.9%) | 1.00 | ||
Yes | 166 (42.0%) | 1325 (33.1%) | 1.467 * [1.189–1.811] | ||
Drinking Behavior | 395 | 4007 | 0.001 ** | 10.224 | |
No | 272 (68.9%) | 3050 (76.1%) | 1.00 | ||
Yes | 123 (31.1%) | 957 (23.9%) | 1.441 * [1.151–1.805] | ||
Carcinoembryonic Antigen (CEA) lab value | 395 | 4007 | 0.894 | 0.018 | |
≤050 | 265 (67.1%) | 2675 (66.8%) | 1.015 [0.815–1.265] | ||
>051–100, 987 | 130 (32.9%) | 1332 (33.2%) | 1.00 |
Rank | GainRatio * | InfoGain * | RF | C5.0 | MARS | Overall |
---|---|---|---|---|---|---|
1 | Age at Diagnosis | Age at Diagnosis | Age at Diagnosis | Sex | Age at Diagnosis | Age at Diagnosis |
2 | Chemotherapy | Chemotherapy | Chemotherapy | Radiotherapy | Smoking Behavior | Chemotherapy |
3 | Smoking Behavior | Smoking Behavior | Smoking Behavior | Drinking Behavior | Chemotherapy | Smoking Behavior |
4 | Drinking Behavior | Sex | Sex | Combine stage group | Tumor Size | Combine Stage Group |
5 | Sex | Drinking Behavior | Drinking Behavior | Chemotherapy | Combine Stage Group | Sex |
6 | Combine Stage Group | Combine Stage Group | Combine Stage Group | Age at Diagnosis | Radiotherapy | Drinking Behavior |
7 | BMI | BMI | BMI | Tumor Size | BMI | Radiotherapy |
8 | Radiotherapy | Radiotherapy | Radiotherapy | BMI | Carcinoembryonic Antigen (CEA) Lab Value | BMI |
9 | Tumor Size | Tumor Size | Tumor Size | Carcinoembryonic Antigen (CEA) Lab Value | Drinking Behavior | Tumor Size |
10 | Carcinoembryonic Antigen (CEA) Lab Value | Carcinoembryonic Antigen (CEA) Lab Value | Carcinoembryonic Antigen (CEA) Lab Value | Smoking Behavior | Sex | Carcinoembryonic Antigen (CEA) Lab Value |
Method | Specificity | Sensitivity | Accuracy | F1 Score | Precision(PPV) | NPV | AUC |
---|---|---|---|---|---|---|---|
C5.0 | 0.8812 | 0.7082 | 0.7941 | 0.7759 | 0.8579 | 0.9684 | 0.8488 |
RF | 0.8377 | 0.7439 | 0.7905 | 0.7814 | 0.8228 | 0.9707 | 0.8342 |
C4.5 | 0.7565 | 0.7997 | 0.7783 | 0.7840 | 0.7689 | 0.9746 | 0.8330 |
CART | 0.8551 | 0.7225 | 0.7883 | 0.7745 | 0.8347 | 0.9690 | 0.8285 |
SVM | 0.8623 | 0.7554 | 0.8085 | 0.7988 | 0.8475 | 0.9728 | 0.8203 |
LGR | 0.8188 | 0.4521 | 0.6343 | 0.5544 | 0.7166 | 0.9381 | 0.6580 |
LDA | 0.8188 | 0.4421 | 0.6292 | 0.5455 | 0.7120 | 0.9371 | 0.6575 |
Risk Factors | With SPCs (%) | Without SPCs (%) | p-Value | χ2 | Odds Ratio |
---|---|---|---|---|---|
n (%) | 205 (7.5%) | 2542 (92.5%) | |||
Sex | 205 | 2542 | 0.1 | 2.702 | |
Male | 143 (69.8%) | 1628 (64.0%) | 1.295 [0.951–1.763] | ||
Female | 62 (30.2%) | 914 (36.0%) | 1.00 | ||
Age at Diagnosis | 205 | 2542 | 0.004 ** | 8.207 | |
<65 years | 107 (52.2%) | 1584 (62.3%) | 1.00 | ||
≥65 years | 98 (47.8%) | 958 (37.7%) | 1.514 * [1.138–2.015] | ||
Tumor size | 205 | 2542 | 0.831 | 0.046 | |
<5 cm | 119 (58.0%) | 1495 (58.8%) | 1.00 | ||
≥5 cm | 86 (42.0%) | 1047 (41.2%) | 1.032 [0.773–1.377] | ||
Combine Stage Group | 205 | 2542 | 0.397 | 0.718 | |
≤stage II | 52 (25.4%) | 579 (22.8%) | 1.152 [0.830–1.600] | ||
>stage II | 153 (74.6%) | 1963 (77.2%) | 1.00 | ||
Radiotherapy | 205 | 2542 | 0.302 | 1.065 | |
No | 108 (52.7%) | 1244 (48.9%) | 1.162 [0.874–1.545] | ||
Yes | 97 (47.3%) | 1298 (51.1%) | 1.00 | ||
BMI | 205 | 2542 | 0.382 | 0.764 | |
<24 | 101 (49.3%) | 1333 (52.4%) | 1.00 | ||
≥24 | 104 (50.7%) | 1209 (47.6%) | 1.135 [0.854–1.509] | ||
Smoking Behavior | 205 | 2542 | 0.017 * | 5.695 | |
No | 113 (55.1%) | 1614 (63.5%) | 1.00 | ||
Yes | 92 (44.9%) | 928 (36.5%) | 1.416 * [1.063–1.886] | ||
Drinking Behavior | 205 | 2542 | 0.014 * | 6.064 | |
No | 134 (65.4%) | 1863 (73.3%) | 1.00 | ||
Yes | 71 (34.6%) | 679 (26.7%) | 1.457 * [1.078–1.968] | ||
Carcinoembryonic Antigen (CEA) Lab Value | 205 | 2542 | 0.475 | 0.511 | |
≤050 | 115 (56.1%) | 1491 (58.7%) | 1.00 | ||
>051–100, 987 | 90 (43.9%) | 1051 (41.3%) | 1.110 [0.833–1.479] |
Rules No. | Combinations of Condition Factors | SPCs/Observed (n) | Accuracy |
---|---|---|---|
1 | Drinking Behavior (No) + CEA Lab Value (≤050 ng/mL) + Sex (Male) + Age at Diagnosis (<65 years) | 149/261 | 57.0% |
4 | Drinking Behavior (No) + CEA Lab Value (≤050 ng/mL) + Sex (Female) + Age at Diagnosis (≥65 years) | 114/175 | 65.1% |
6 | Drinking Behavior (No) + CEA Lab Value (>050 ng/mL) + Age at Diagnosis (≥65 years) + Sex (Male) | 84/141 | 59.5% |
9 | Drinking Behavior (Yes) + BMI (<24) + Sex (Male) + Age at Diagnosis (<65 years) + CEA Lab Value (>050 ng/mL) | 25/36 | 69.4% |
10 | Drinking Behavior (Yes) + BMI (<24) + Sex (Male) + Age at Diagnosis (≥65 years) + CEA Lab Value (≤050 ng/mL) | 31/45 | 68.8% |
12 | Drinking Behavior (Yes) + BMI (<24) + Sex (Female) | 7/9 | 77.7% |
13 | Drinking Behavior (Yes) + BMI (≥24) | 153/225 | 68.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, J.-Y.; Chang, C.-C.; Liu, C.-F.; Chou, C.-L.; Yang, C.-C. Longitudinal Risk Analysis of Second Primary Cancer after Curative Treatment in Patients with Rectal Cancer. Diagnostics 2024, 14, 1461. https://doi.org/10.3390/diagnostics14131461
Hsia J-Y, Chang C-C, Liu C-F, Chou C-L, Yang C-C. Longitudinal Risk Analysis of Second Primary Cancer after Curative Treatment in Patients with Rectal Cancer. Diagnostics. 2024; 14(13):1461. https://doi.org/10.3390/diagnostics14131461
Chicago/Turabian StyleHsia, Jiun-Yi, Chi-Chang Chang, Chung-Feng Liu, Chia-Lin Chou, and Ching-Chieh Yang. 2024. "Longitudinal Risk Analysis of Second Primary Cancer after Curative Treatment in Patients with Rectal Cancer" Diagnostics 14, no. 13: 1461. https://doi.org/10.3390/diagnostics14131461
APA StyleHsia, J.-Y., Chang, C.-C., Liu, C.-F., Chou, C.-L., & Yang, C.-C. (2024). Longitudinal Risk Analysis of Second Primary Cancer after Curative Treatment in Patients with Rectal Cancer. Diagnostics, 14(13), 1461. https://doi.org/10.3390/diagnostics14131461