Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer—A Comparison with 18F-FDG and CXCR4 Immunohistochemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. [68Ga]Ga-Pentixafor Synthesis
2.3. [68Ga]Ga-Pentixafor PET/CT Imaging Procedure
2.4. [18F]F-FDG PET/CT Imaging Procedure
2.5. Image Analysis
2.6. Qualitative Analysis
2.7. Semi-Quantitative Analysis
2.8. Histopathological Analysis
2.9. Statistical Analysis
3. Results
3.1. Correlation of Pentixafor with Clinical Findings
3.2. Comparison of FDG and 68Ga-Pentixafor
3.3. Visual Analysis
3.4. Quantitative Analysis
3.5. CXCR4 Immunohistochemistry (IHC)
3.6. Survival Analysis
3.7. Metastasis
3.8. HPV
3.9. Ki67
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CXCR4 | Chemokine receptor 4 |
FDG | Fluorodeoxyglucose |
HNSCC | Head and neck squamous cell carcinoma |
HPV | Human Papilloma virus |
IHC | Immunohistochemistry |
RT | Radiation therapy |
TBR | Tumor-to-background ratio |
TLU | Total Lesion Uptake |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- De-Colle, C.; Menegakis, A.; Mönnich, D.; Welz, S.; Boeke, S.; Sipos, B.; Fend, F.; Mauz, P.S.; Tinhofer, I.; Budach, V.; et al. SDF-1/CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy. Radiother. Oncol. 2018, 126, 125–131. [Google Scholar] [CrossRef]
- Luker, G.D.; Yang, J.; Richmond, A.; Scala, S.; Festuccia, C.; Schottelius, M.; Wester, H.J.; Zimmermann, J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J. Leucoc. Biol. 2021, 109, 969–989. [Google Scholar] [CrossRef]
- Martin, M.; Mayer, I.A.; Walenkamp, A.M.; Lapa, C.; Andreeff, M.; Bobirca, A. At the Bedside: Profiling and treating patients with CXCR4-expressing cancers. J. Leucoc. Biol. 2021, 109, 953–967. [Google Scholar] [CrossRef]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.; Fritsche, M.K.; Li, Y. CXCR4: A New Player in an Old Scene? ORL 2017, 79, 34–42. [Google Scholar] [CrossRef]
- Qiao, N.; Wang, L.; Wang, T.; Li, H. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells. Tumor Biol. 2016, 37, 8169–8179. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tannous, B.A.; Poznansky, M.C.; Chen, H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol. Res. 2020, 159, 105010. [Google Scholar] [CrossRef]
- Uchida, D.; Kuribayashi, N.; Kinouchi, M.; Sawatani, Y.; Shimura, M.; Mori, T.; Hasegawa, T.; Miyamoto, Y.; Kawamata, H. Effect of a novel orally bioavailable CXCR4 inhibitor, AMD070, on the metastasis of oral cancer cells. Oncol. Rep. 2018, 40, 303–308. [Google Scholar] [CrossRef]
- Buck, A.K.; Haug, A.; Dreher, N.; Lambertini, A.; Higuchi, T.; Lapa, C.; Weich, A.; Pomper, M.G.; Wester, H.J.; Zehndner, A.; et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms using (68)Ga-PentixaFor PET. J. Nucl. Med. 2022, 63, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Werner, R.A.; Schirbel, A.; Higuchi, T.; Buck, A.K.; Kosmala, A.; Bley, T.A.; Hagen, R.; Hackenberg, S.; Rosenwald, A.; et al. Diagnostic efficacy of CXC motif chemokine receptor 4-directed PET/CT in newly diagnosed head and neck squamous cell carcinoma-a head-to-head comparison with [18F] FDG. Am. J. Nucl. Med. Mol. Imaging. 2023, 13, 208. [Google Scholar] [PubMed]
- Dreher, N.; Hahner, S.; Fuß, C.T.; Schlötelburg, W.; Hartrampf, P.E.; Serfling, S.E.; Schirbel, A.; Samnick, S.; Higuchi, T.; Weich, A.; et al. CXCR4-directed PET/CT with [68 Ga] Ga-pentixafor in solid tumors—A comprehensive analysis of imaging findings and comparison with histopathology. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Koksel, Y.; Gencturk, M.; Spano, A.; Reynolds, M.; Roshan, S.; Caycı, Z. Utility of Likert scale (Deauville criteria) in assessment of chemoradiotherapy response of primary oropharyngeal squamous cell cancer site. Clin. Imaging 2019, 55, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, L.; Zhao, H.; Zhao, J.; Weng, H.; Zhao, B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget 2015, 6, 5022. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Nakashiro, K.I.; Hara, S.; Klosek, S.K.; Li, C.; Shintani, S.; Hamakawa, H. CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int. J. Oncol. 2006, 28, 61–66. [Google Scholar] [CrossRef]
- Onoue, T.; Uchida, D.; Begum, N.M.; Tomizuka, Y.; Yoshida, H.; Sato, M. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int. J. Oncol. 2006, 29, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Chakraborty, S. CXCL11-CXCR3 axis mediates tumor lymphatic cross talk and inflammation-induced tumor, promoting pathways in head and neck cancers. Am. J. Pathol. 2020, 190, 900–915. [Google Scholar]
- Uchida, D.; Begum, N.; Almofti, A.; Nakashiro, K.; Kawamata, H.; Tateishi, Y.; Hamakawa, H.; Yoshida, H.; Sato, M. Possible role of stromal-cell-derived factor-1/ CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp. Cell Res. 2003, 290, 289–302. [Google Scholar] [CrossRef]
- Samara, G.; Lawrence, D.; Chiarelli, C.; Valentino, M.; Lyubsky, S.; Zucker, S.; Vaday, G. CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett. 2004, 214, 231–241. [Google Scholar] [CrossRef]
- Rave-Fränk, M.; Tehrany, N.; Kitz, J.; Leu, M.; Weber, H.E.; Burfeind, P.; Schliephake, H.; Canis, M.; Beissbarth, T.; Reichardt, H.M.; et al. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma. Strahlenther. Und Onkologie. 2016, 192, 47. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Vogelzang, N.J.; Conkling, P.; Raddad, E.; Polzer, J.; Roberson, S.; Stille, J.R.; Saleh, M.; Thornton, D. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res. 2014, 20, 3581–3588. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Yong, C.S.; Yoo, B.K. Plerixafor for stem cell mobilization in patients with non-Hodgkin’s lymphoma and multiple myeloma. Ann. Pharmacother. 2010, 44, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.A.; Kircher, S.; Higuchi, T.; Kircher, M.; Schirbel, A.; Wester, H.J.; Buck, A.K.; Pomper, M.G.; Rowe, S.P.; Lapa, C. CXCR4-directed imaging in solid tumors. Front. Oncol. 2019, 9, 770. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001, 410, 6824. [Google Scholar] [CrossRef] [PubMed]
- Janowski, E.; Harter, W.; Deeken, J. Outcomes of Head-and-Neck Cancer Radiation Treatment in an HIV Patient Population: Definitive Management of Head-and-Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 492. [Google Scholar] [CrossRef]
- Rosenberg, N.E.; Shook-Sa, B.E.; Liu, M.; Stranix-Chibanda, L.; Yotebieng, M.; Sam-Agudu, N.A.; Hudgens, M.G.; Phiri, S.J.; Mutale, W.; Bekker, L.G.; et al. Adult HIV-1 incidence across 15 high-burden countries in sub-Saharan Africa from 2015 to 2019: A pooled analysis of nationally representative data. Lancet HIV 2023, 10, e175–e185. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, B.; Treboute, C.; Brelot, A.; Alizon, M. Cooperation of the V1/V2 and V3 domains of human immunodeficiency virus type 1 gp120 for interaction with the CXCR4 receptor. J. Virol. 2001, 75, 5457–5464. [Google Scholar] [CrossRef] [PubMed]
- Connell, B.J.; Hermans, L.E.; Wensing, A.M.; Schellens, I.; Schipper, P.J.; van Ham, P.M.; de Jong, D.T.; Otto, S.; Mathe, T.; Moraba, R.; et al. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci. Rep. 2020, 10, 15866. [Google Scholar] [CrossRef]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer: A systemic, quantitative review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef]
- Winter, S.C.; Corbridge, R.J.; Cox, G.J.; Harris, A.L. Hypoxia and anaemia in head and neck squamous cell carcinoma–mechanisms of therapy failure and provision of new therapeutic targets. Clin. Otolaryngol. 2005, 30, 99. [Google Scholar] [CrossRef] [PubMed]
- Cierpikowski, P.; Lis-Nawara, A.; Bar, J. Prognostic Value of WNT1, NOTCH1, PDGFRβ, and CXCR4 in Oral Squamous Cell Carcinoma. Anticancer Res. 2023, 43, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Paidpally, V.; Tahari, A.K.; Lam, S.; Alluri, K.; Marur, S.; Koch, W.; Wahl, R.L.; Subramaniam, R.M. Addition of 18F-FDG PET/CT to clinical assessment predicts overall survival in HNSCC: A retrospective analysis with follow-up for 12 years. J. Nucl. Med. 2013, 54, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Martens, R.M.; Koopman, T.; Lavini, C.; Ali, M.; Peeters, C.F.; Noij, D.P.; Zwezerijnen, G.; Marcus, J.T.; Vergeer, M.R.; Leemans, C.R.; et al. Multiparametric functional MRI and 18 F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo) radiation. Eur. Radiol. 2021, 31, 616–628. [Google Scholar] [CrossRef]
- Cegla, P.; Currie, G.; Wróblewska, J.P.; Cholewiński, W.; Kaźmierska, J.; Marszałek, A.; Kubiak, A.; Golusinski, P.; Golusiński, W.; Majchrzak, E. Influence of semiquantitative [18F] FDG PET and hematological parameters on survival in HNSCC Patients using neural network analysis. Pharmaceuticals 2022, 15, 224. [Google Scholar] [CrossRef]
- Corrêa, G.T.B.; Bandeira, G.A.; Cavalcanti, B.G.; Santos, F.B.G.; Neto, J.F.R.; Guimarães, A.L.S.; Haikal, D.S.A.; De Paula, A.M.B. Analysis of ECOG performance status in head and neck squamous cell carcinoma patients: Association with sociodemographical and clinical factors, and overall survival. Support. Care Cancer 2012, 20, 2679–2685. [Google Scholar] [CrossRef]
- Meadows, G.G.; Zhang, H. Effects of alcohol on tumor growth, metastasis, immune response, and host survival. Alcohol Res. Curr. Rev. 2015, 37, 311. [Google Scholar]
- Fan, C.; Wu, J.; Shen, Y.; Hu, H.; Wang, Q.; Mao, Y.; Ye, B.; Xiang, M. Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Med. 2022, 11, 922–930. [Google Scholar] [CrossRef]
- Marquardt, A.; Hartrampf, P.; Kollmannsberger, P.; Solimando, A.G.; Meierjohann, S.; Kübler, H.; Bargou, R.; Schilling, B.; Serfling, S.E.; Buck, A.; et al. Predicting Microenvironment in CXCR4-and FAP-Positive Solid Tumors—A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers 2023, 15, 392. [Google Scholar] [CrossRef]
Patient No. | Age | Gender | Site | HIV Status | TNM | Differentiation | Histology |
---|---|---|---|---|---|---|---|
1 | 61 | Male | oropharynx | Negative | T4aN2cM0 | moderate | SCC |
2 | 51 | Female | Oral cavity | Negative | T4aN3bM0 | poor | SCC |
3 | 72 | Male | oropharynx | Negative | T4N1M0 | moderate | SCC |
4 | 47 | Female | Oral cavity | Negative | T4aN2cM0 | moderate | SCC |
5 | 49 | Male | Unknown primary | Positive | TxN3bM0 | moderate | SCC |
6 | 60 | Male | oral cavity | Negative | T4acN3bM0 | moderate | SCC |
7 | 50 | Male | oral cavity | Negative | T4aN2cM0 | moderate | SCC |
8 | 51 | Female | oral cavity | Negative | T3N1M0 | moderate | SCC |
9 | 59 | Male | oral cavity | Negative | T4N3bM0 | moderate | SCC |
10 | 68 | Male | oropharynx | Negative | T4bN1M0 | myoepithelial ca | myoepithelial |
11 | 53 | Male | oropharynx | Negative | T4aN1M0 | moderate | oropharynx |
12 | 73 | Male | oral cavity | Negative | T3N0M0 | moderate | SCC |
13 | 46 | Female | oropharynx | Positive | T3N3bM0 | moderate | SCC |
14 | 48 | Male | oral cavity | Negative | T4bN2cM0 | moderate | SCC |
15 | 39 | Male | oropharynx | Positive | T4bN0M1 | mucoepidermoid | mucoepidermoid |
16 | 52 | Male | nasopharynx | Negative | T4N2M1 | poor | SCC |
17 | 42 | Male | oropharynx | Negative | T1N3bM0 | moderate | SCC |
18 | 49 | Female | nasopharynx | Negative | T1N1M0 | undifferentiated | SCC |
19 | 35 | Male | oropharynx | Negative | T3N0M0 | moderate | SCC |
20 | 57 | Male | oral cavity | Negative | T3N0M0 | moderate | SCC |
21 | 61 | Male | oral cavity | Negative | T4aN0M0 | moderate | SCC |
22 | 68 | Female | oral cavity | Negative | T4aN2cM0 | moderate | SCC |
23 | 46 | Male | oropharynx | Positive | T4N3M1 | moderate | SCC |
Patient No | SUVmax [g/mL] | SUVmean [g/mL] | Tumour:Aorta Ratio | Total Lesion Uptake [cm3] | Likert Scale | Visual * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FDG | Pentixafor | FDG | Pentixafor | FDG | Pentixafor | FDG | Pentixafor | FDG | Pentixafor | FDG | Pentixafor | |
1 | 11.9 | 3.1 | 6.9 | 2.0 | 4.6 | 1.1 | 98.2 | 46 | 5 | 4 | 5 | 1 |
2 | 8.9 | 5.0 | 4.9 | 2.3 | 6.3 | 2.3 | 129 | 66 | 5 | 5 | 5 | 0 |
3 | 8.2 | 3.5 | 5.1 | 2.3 | 9.3 | 1.4 | 34.1 | 60 | 5 | 5 | 5 | 1 |
4 | 18.9 | 3.7 | 11.6 | 2.4 | 7.0 | 1.6 | 124 | 82 | 5 | 4 | 2 | 2 |
5 | 15.3 | 5.6 | 8.0 | 3.4 | 5.7 | 1.4 | 477 | 477 | 5 | 4 | 5 | 4 |
6 | 18.4 | 4.8 | 10.3 | 3.0 | 10.7 | 2.2 | 277 | 136 | 5 | 4 | 5 | 3 |
7 | 13.5 | 3.4 | 7.5 | 1.8 | 9.7 | 1.6 | 49 | 98 | 5 | 3 | 5 | 2 |
8 | - | 2.8 | - | 1.7 | - | 1.2 | - | 30 | 5 | 4 | - | 0 |
9 | 16.9 | 5.6 | 8.8 | 2.8 | 10.8 | 2.4 | 906 | 288 | 5 | 5 | 5 | 3 |
10 | 13.0 | 8.4 | 7.6 | 2.9 | 4.6 | 2.1 | 367 | 170 | 5 | 5 | 5 | 3 |
11 | - | 8.6 | - | 4.5 | - | 2.7 | - | 312 | - | 5 | - | 2 |
12 | - | 4.9 | - | 1.2 | - | 1.6 | - | 76 | - | 4 | - | 4 |
13 | 19.5 | 11.7 | 11.9 | 6.7 | 8.0 | 2.8 | 402 | 470 | 5 | 5 | 5 | 4 |
14 | 9.8 | 3.2 | 6.4 | 2.0 | 5.7 | 1.2 | 13.3 | 16 | 5 | 4 | 5 | 1 |
15 | 21.7 | 4.9 | 11.7 | 3.0 | 9.4 | 1.6 | 204 | 137 | 5 | 4 | 5 | 2 |
16 | - | 8.9 | - | 4.9 | - | 2.8 | - | 34 | - | 4 | - | 4 |
17 | - | 5.3 | - | 0.8 | - | 1.6 | - | 10 | - | 3 | - | 3 |
18 | 33.1 | 10.9 | 20.7 | 6.5 | 10.1 | 6.4 | 236 | 66 | 5 | 5 | 5 | 5 |
19 | - | 8.2 | - | 4.0 | - | 2.4 | - | 49 | - | 5 | - | 5 |
20 | - | 4.6 | - | 2.5 | - | 2.2 | - | 301 | - | 0 | - | 4 |
21 | 50.5 | 5.1 | 29.7 | 2.1 | 16.0 | 1.8 | 393 | 27 | 5 | 0 | 5 | 1 |
22 | 60.0 | 7.1 | 36.3 | 3.1 | 19.2 | 1.6 | 1240 | 269 | - | 4 | 5 | 4 |
23 | 20.2 | 6.0 | 12.2 | 6.0 | 9.0 | 2.1 | 531 | 162 | 5 | - | 5 | 2 |
Patient No. | Ki67 | p16 | CXCR4 | 68Ga-Pentixafor | ||||
---|---|---|---|---|---|---|---|---|
Intensity | % Stained Cells | IRS Scoring | TMR | TSR | TLR | |||
1 | 70% | 3 | 50% | 10 | 1.83 | 0.5 | 1.29 | |
2 | 4.96 | 0.7 | 2.23 | |||||
3 | 70% | 40% | ++ | 40% | 4 | 3.76 | 0.4 | 1.31 |
4 | 50% | +++ | 50% | 6 | 3.04 | 0.5 | 1.95 | |
5 | 90% | +++ | 90% | 12 | 2.34 | 0.6 | 1.55 | |
6 | 3.64 | 0.9 | 2.81 | |||||
7 | 60% | Negative | + | 20% | 2 | 2.41 | - | 1.99 |
8 | 30% | 70% | +++ | 40% | 3.47 | 0.5 | 1.34 | |
9 | 10% | negative | ++ | 30% | 4 | 3.53 | 1.4 | 2.63 |
10 | 40% | negative | ++ | 40% | 4 | 4.08 | 0.8 | 2.78 |
11 | 70% | 50% | ++ | 70% | 6 | 3.73 | 1.5 | 3.03 |
12 | 80% | 60% | 0 | 0 | 4.22 | 0.6 | 1.79 | |
13 | 90% | 95% | ++ | 60% | 6 | 6.90 | 1.4 | 3.48 |
14 | 95% | negative | negative | 0 | 0 | 2.32 | 0.3 | 1.03 |
15 | 90% | negative | 0 | 0 | 4.81 | 0.7 | 1.85 | |
16 | 90% | negative | +++ | 60% | 9 | 6.30 | 1.0 | - |
17 | 60% | 10% | 0 | 0 | 0 | 4.19 | 0.6 | 1.68 |
18 | 70% | negative | 2 | 10% | 4 | 17.37 | 1.9 | 7.60 |
19 | 8% | 20% | +++ | 80% | 9 | 5.91 | 1.0 | 2.51 |
20 | 40% | 3% | +++ | 70% | 9 | 3.70 | 0.9 | 2.35 |
21 | 60% | Negative | Negative | 0 | 0 | 4.25 | 0.8 | 2.07 |
22 | 60% | Negative | ++ | 5% | 2 | 5.51 | 0.6 | 1.35 |
23 | 95% | ++ | 30% | 2 | 5.56 | 1.1 | 3.01 |
Variable | Correlation Co-Efficient | p Value |
---|---|---|
Age | −0.057 | 0.812 |
N stage | 0.1 | 0.657 |
M stage | −0.048 | 0.841 |
[68Ga]Ga-Pentixafor SUVmax | 0.351 | 0.129 |
[68Ga]Ga-Pentixafor TMR | 0.096 | 0.686 |
[68Ga]Ga-Pentixafor TSR | 0.22 | 0.357 |
[68Ga]Ga-Pentixafor SUVmean | 0.5 | 0.027 * |
[68Ga]Ga-Pentixafor TLU | 0.43 | 0.053 * |
[18F]FDG SUVmax | −0.202 | 0.490 |
[18F]FDG TLU | 0.180 | 0.539 |
[18F]FDG SUVmean | −0.185 | 0.526 |
Ki67 | 0.317 | 0.174 |
Hb | −0.495 | 0.024 * |
ECOG score | 0.83 | 0.0104 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadebe, B.; Harry, L.; Gabela, L.; Masikane, S.; Patel, M.; Zwane, S.; Pillay, V.; Bipath, P.; Cebekhulu, N.; Nyakale, N.; et al. Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer—A Comparison with 18F-FDG and CXCR4 Immunohistochemistry. Diagnostics 2024, 14, 1375. https://doi.org/10.3390/diagnostics14131375
Hadebe B, Harry L, Gabela L, Masikane S, Patel M, Zwane S, Pillay V, Bipath P, Cebekhulu N, Nyakale N, et al. Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer—A Comparison with 18F-FDG and CXCR4 Immunohistochemistry. Diagnostics. 2024; 14(13):1375. https://doi.org/10.3390/diagnostics14131375
Chicago/Turabian StyleHadebe, Bawinile, Lerwine Harry, Lerato Gabela, Siphelele Masikane, Maryam Patel, Sizwe Zwane, Venesen Pillay, Presha Bipath, Nonhlanhla Cebekhulu, Nozipho Nyakale, and et al. 2024. "Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer—A Comparison with 18F-FDG and CXCR4 Immunohistochemistry" Diagnostics 14, no. 13: 1375. https://doi.org/10.3390/diagnostics14131375
APA StyleHadebe, B., Harry, L., Gabela, L., Masikane, S., Patel, M., Zwane, S., Pillay, V., Bipath, P., Cebekhulu, N., Nyakale, N., Ramdass, P., Msimang, M., Aldous, C., Sathekge, M., & Vorster, M. (2024). Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer—A Comparison with 18F-FDG and CXCR4 Immunohistochemistry. Diagnostics, 14(13), 1375. https://doi.org/10.3390/diagnostics14131375