Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing
2.2. Spectrum-Aided Vision Enhancer (SAVE)
2.3. YOLOv5 Model
2.4. YOLOv8 Model
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsop, B.R.; Sharma, P. Esophageal cancer. Gastroenterol. Clin. 2016, 45, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Short, M.W.; Burgers, K.G.; Fry, V.T. Esophageal cancer. Am. Fam. Physician 2017, 95, 22–28. [Google Scholar]
- Yang, K.-Y.; Fang, Y.-J.; Karmakar, R.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Assessment of narrow band imaging algorithm for video capsule endoscopy based on decorrelated color space for esophageal cancer. Cancers 2023, 15, 4715. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.; Abdo, J.; Agrawal, D.K. Biomarkers for Early Detection, Prognosis, and Therapeutics of Esophageal Cancers. Int. J. Mol. Sci. 2023, 24, 3316. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.-Y.; Peng, Y.-H.; Weng, X.-F.; Xie, J.-J.; Xu, Y.-W. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J. Gastroenterol. 2020, 26, 1708. [Google Scholar] [CrossRef]
- Radlinski, M.; Shami, V.M. Role of endoscopic ultrasound in esophageal cancer. World J. Gastrointest. Endosc. 2022, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wang, M.; Zhu, Z.; Zhang, Y.; Jiao, Y.; Fang, W. Integrated positron emission tomography and computed tomography in preoperative lymph node staging of non-small cell lung cancer. Chin. Med. J. 2014, 127, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Pellat, A.; Dohan, A.; Soyer, P.; Veziant, J.; Coriat, R.; Barret, M. The role of magnetic resonance imaging in the management of esophageal cancer. Cancers 2022, 14, 1141. [Google Scholar] [CrossRef]
- Du Le, V.; Wang, Q.; Gould, T.; Ramella-Roman, J.C.; Pfefer, T.J. Vascular contrast in narrow-band and white light imaging. Appl. Opt. 2014, 53, 4061–4071. [Google Scholar] [CrossRef]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef] [PubMed]
- Lixin, L.; Mengzhu, L.; Zhigang, Z.; Junle, Q. Recent advances of hyperspectral imaging application in biomedicine. Chin. J. Lasers 2018, 45, 0207017. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; He, L.; Meng, C.; Du, S.; Bao, J.; Zheng, Y. Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl. Cancer Res. 2020, 9, 1265. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Qadir, A.; Farooq, U.; Shakir, M.; Laghari, A.A. Hyperspectral imaging: A review and trends towards medical imaging. Curr. Med. Imaging 2023, 19, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Barbeiro, S.; Libânio, D.; Castro, R.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Narrow-band imaging: Clinical application in gastrointestinal endoscopy. GE Port. J. Gastroenterol. 2018, 26, 40–53. [Google Scholar] [CrossRef]
- Mukundan, A.; Hong-Thai, N.; Wang, H.-C. Detection of PM 2.5 Particulates using a Snap-Shot Hyperspectral Imaging Technology. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2022, Sapporo, Japan, 31 August–5 September 2022; p. CPDP_08. [Google Scholar]
- Kefauver, S.C.; Peñuelas, J.; Ustin, S.L. Applications of hyperspectral remote sensing and GIS for assessing forest health and air pollution. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3379–3382. [Google Scholar]
- Iyer, P.; Sriram, A.; Lal, S. Deep learning ensemble method for classification of satellite hyperspectral images. Remote Sens. Appl. Soc. Environ. 2021, 23, 100580. [Google Scholar] [CrossRef]
- Qian, S.-E. Hyperspectral satellites, evolution, and development history. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Zhou, Q.; Wang, S.; Wu, X.; Jiang, C.; Peng, B.; Mei, W.; Li, K. Cross-scale sensing of field-level crop residue cover: Integrating field photos, airborne hyperspectral imaging, and satellite data. Remote Sens. Environ. 2023, 285, 113366. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Bharti, R. Hyperspectral remote sensing and geological applications. Curr. Sci. 2015, 108, 879–891. [Google Scholar]
- Kurz, T.; Buckley, S.; Becker, J. Hyperspectral imaging: A novel geological mapping technique for subsurface construction sites. In Proceedings of the World Tunnel Congress 2017—Surface Challenges—Underground Solutions, Bergen, Norway, 9–15 June 2017; p. 10. [Google Scholar]
- Mukundan, A.; Tsao, Y.-M.; Wang, H.-C. Detection of counterfeit holograms using hyperspectral imaging. In Proceedings of the Holography, Diffractive Optics, and Applications XIII, Beijing, China, 14–17 October 2023; pp. 17–25. [Google Scholar]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Ke, C. Military object detection using multiple information extracted from hyperspectral imagery. In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 15–17 December 2017; pp. 124–128. [Google Scholar]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral imaging combined with artificial intelligence in the early detection of esophageal cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.; Gockel, I. Automatic recognition of colon and esophagogastric cancer with machine learning and hyperspectral imaging. Diagnostics 2021, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of early esophageal cancer by semantic segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Maktabi, M.; Wichmann, Y.; Köhler, H.; Ahle, H.; Lorenz, D.; Bange, M.; Braun, S.; Gockel, I.; Chalopin, C.; Thieme, R. Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging. Sci. Rep. 2022, 12, 4508. [Google Scholar] [CrossRef]
- Wu, I.-C.; Syu, H.-Y.; Jen, C.-P.; Lu, M.-Y.; Chen, Y.-T.; Wu, M.-T.; Kuo, C.-T.; Tsai, Y.-Y.; Wang, H.-C. Early identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. Sci. Rep. 2018, 8, 13797. [Google Scholar] [CrossRef]
- Zhang, P.; She, Y.; Gao, J.; Feng, Z.; Tan, Q.; Min, X.; Xu, S. Development of a Deep Learning System to Detect Esophageal Cancer by Barium Esophagram. Front. Oncol. 2022, 12, 766243. [Google Scholar] [CrossRef]
- Qureshi, R.; Ragab, M.G.; Abdulkader, S.J.; Alqushaib, A.; Sumiea, E.H.; Alhussian, H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Gkouzionis, I.; Zhong, Y.; Nazarian, S.; Darzi, A.; Patel, N.; Peters, C.J.; Elson, D.S. A YOLOv5-based network for the detection of a diffuse reflectance spectroscopy probe to aid surgical guidance in gastrointestinal cancer surgery. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Aishwarya, N.; Prabhakaran, K.M.; Debebe, F.T.; Reddy, M.S.S.A.; Pranavee, P. Skin Cancer diagnosis with Yolo Deep Neural Network. Procedia Comput. Sci. 2023, 220, 651–658. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, M.N.; Phung, L.D.; Pham, L.T.T. Anomalies Detection in Chest X-Rays Images Using Faster R-CNN and YOLO. Vietnam. J. Comput. Sci. (World Sci.) 2023, 10, 499–515. [Google Scholar] [CrossRef]
- Prinzi, F.; Insalaco, M.; Orlando, A.; Gaglio, S.; Vitabile, S. A YOLO-based model for breast cancer detection in mammograms. Cogn. Comput. 2024, 16, 107–120. [Google Scholar] [CrossRef]
- Tamang, S.; Sen, B.; Pradhan, A.; Sharma, K.; Singh, V.K. Enhancing COVID-19 safety: Exploring yolov8 object detection for accurate face mask classification. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 892–897. [Google Scholar]
- Meng, Q.-Q.; Gao, Y.; Lin, H.; Wang, T.-J.; Zhang, Y.-R.; Feng, J.; Li, Z.-S.; Xin, L.; Wang, L.-W. Application of an artificial intelligence system for endoscopic diagnosis of superficial esophageal squamous cell carcinoma. World J. Gastroenterol. 2022, 28, 5483. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Su, J. Based on the improved YOLOV3 small target detection algorithm. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 2155–2159. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Thuan, D. Evolution of Yolo Algorithm and Yolov5: The State-of-the-Art Object Detention Algorithm. Bachelor’s Thesis, Oulu University of Applied Sciences, Oulu, Finland, 2021. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Mehra, A. Understanding YOLOv8 Architecture, Applications & Features. Labellerr. 2023. Available online: https://www.labellerr.com/blog/understanding-yolov8-architecture-applications-features/ (accessed on 15 May 2024).
- Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A Review on YOLOv8 and Its Advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 27–28 June 2024; pp. 529–545. [Google Scholar]
- Adjobo, E.C.; Mahama, A.T.S.; Gouton, P.; Tossa, J. Automatic Localization of Five Relevant Dermoscopic Structures Based on YOLOv8 for Diagnosis Improvement. J. Imaging 2023, 9, 148. [Google Scholar] [CrossRef]
- Yang, H.; Hu, B. Recent advances in early esophageal cancer: Diagnosis and treatment based on endoscopy. Postgrad. Med. 2021, 133, 665–673. [Google Scholar] [CrossRef]
- Jansen, M.; Wright, N.A. Stem Cells, Pre-Neoplasia, and Early Cancer of the Upper Gastrointestinal Tract; Springer: Berlin/Heidelberg, Germany, 2016; Volume 908. [Google Scholar]
- Dumoulin, F.L.; Hildenbrand, R.; Oyama, T.; Steinbrück, I. Current trends in endoscopic diagnosis and treatment of early esophageal cancer. Cancers 2021, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- SeekFire. Overview of Model Structure About YOLOv5 · Issue #280 · ultralytics/yolov5. Available online: https://github.com/ultralytics/yolov5/issues/280 (accessed on 15 May 2024).
- King, R. Brief Summary of YOLOv8 Model Structure · Issue #189 · ultralytics/ultralytics. Available online: https://github.com/ultralytics/ultralytics/issues/189 (accessed on 15 May 2024).
- Khandelwal, R. Evaluating Performance of an Object Detection Model. Available online: https://towardsdatascience.com/evaluating-performance-of-an-object-detection-model-137a349c517b (accessed on 15 May 2024).
Framework | Model | Metrics | |||
---|---|---|---|---|---|
YOLOv5 | WLI RGB | Precision | Recall | F1-Score | mAP50 |
All | 76.4% | 64.9% | 70.2% | 68.3% | |
Dysplasia | 70.2% | 42% | 52.6% | 48.2% | |
SCC | 71.2% | 69.7% | 70.4% | 73.6% | |
HSI Spectrum | Precision | Recall | F1-Score | mAP50 | |
All | 77.1% | 63.4% | 69.6% | 67.5% | |
Dysplasia | 66.4% | 43.4% | 52.5% | 44.8% | |
SCC | 85.1% | 69% | 76.2% | 75.1% | |
YOLOv8 | WLI RGB | Precision | Recall | F1-Score | mAP50 |
All | 74% | 65.1% | 69.3% | 68.2% | |
Dysplasia | 66.5% | 40.3% | 50.2% | 44.5% | |
SCC | 69.5% | 69.7% | 69.6% | 73.1% | |
HSI Spectrum | Precision | Recall | F1-Score | mAP50 | |
All | 74.8% | 61.4% | 67.4% | 65.6% | |
Dysplasia | 71.2% | 39.8% | 51.1% | 43.3% | |
SCC | 81.7% | 63.6% | 71.5% | 71.9% |
Framework | Model | True Value | Total | |||
---|---|---|---|---|---|---|
YOLOv5 | WLI RGB | Normal | Dysplasia | SCC | 1251 | |
Predicted Value | Normal | 1118 | 0 | 0 | ||
Dysplasia | 3 | 102 | 1 | |||
SCC | 2 | 0 | 25 | |||
HSI Spectrum | Normal | Dysplasia | SCC | 1165 | ||
Predicted Value | Normal | 1031 | 2 | 1 | ||
Dysplasia | 1 | 104 | 1 | |||
SCC | 1 | 0 | 24 | |||
YOLOv8 | WLI RGB | Normal | Dysplasia | SCC | 1253 | |
Predicted Value | Normal | 1067 | 1 | 0 | ||
Dysplasia | 49 | 96 | 2 | |||
SCC | 14 | 0 | 24 | |||
HSI Spectrum | Normal | Dysplasia | SCC | 1166 | ||
Predicted Value | Normal | 1008 | 1 | 0 | ||
Dysplasia | 36 | 94 | 0 | |||
SCC | 6 | 0 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, C.-K.; Karmakar, R.; Tsao, Y.-M.; Jie, L.W.; Mukundan, A.; Huang, C.-W.; Chen, T.-H.; Ko, C.-Y.; Wang, H.-C. Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks. Diagnostics 2024, 14, 1129. https://doi.org/10.3390/diagnostics14111129
Chou C-K, Karmakar R, Tsao Y-M, Jie LW, Mukundan A, Huang C-W, Chen T-H, Ko C-Y, Wang H-C. Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks. Diagnostics. 2024; 14(11):1129. https://doi.org/10.3390/diagnostics14111129
Chicago/Turabian StyleChou, Chu-Kuang, Riya Karmakar, Yu-Ming Tsao, Lim Wei Jie, Arvind Mukundan, Chien-Wei Huang, Tsung-Hsien Chen, Chau-Yuan Ko, and Hsiang-Chen Wang. 2024. "Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks" Diagnostics 14, no. 11: 1129. https://doi.org/10.3390/diagnostics14111129
APA StyleChou, C.-K., Karmakar, R., Tsao, Y.-M., Jie, L. W., Mukundan, A., Huang, C.-W., Chen, T.-H., Ko, C.-Y., & Wang, H.-C. (2024). Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks. Diagnostics, 14(11), 1129. https://doi.org/10.3390/diagnostics14111129