Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiple Prediction Windows/Timepoints
2.2. Data Averaging for a 24–48-Month Lookahead Timeframe
2.3. SOC Comparator
2.4. Comparison with Other Machine Learning Models
2.5. Statistical Analysis
2.6. System Requirements
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet Lond. Engl. 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Riffin, C.; Van Ness, P.H.; Wolff, J.L.; Fried, T. A Multifactorial Examination of Caregiver Burden in a National Sample of Family and Unpaid Caregivers. J. Am. Geriatr. Soc. 2019, 67, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2022 Alzheimer’s Disease Facts & Figures Special Report. Alzheimers Dement 2022; 18. 2022-Facts-and-Figures-Report_1.pdf (). Available online: http://www.alz.org (accessed on 23 July 2023).
- Skaria, A.P. The economic and societal burden of Alzheimer disease: Managed care considerations. Am. J. Manag. Care 2022, 28, S188–S196. [Google Scholar] [CrossRef] [PubMed]
- Busse, A.; Angermeyer, M.C.; Riedel-Heller, S.G. Progression of mild cognitive impairment to dementia: A challenge to current thinking. Br. J. Psychiatry 2006, 189, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bermejo, L.; González-Becerra, M.J.; Barrios-Fernández, S.; Postigo-Mota, S.; Jerez-Barroso, M.D.; Martínez, J.A.; Suárez-Lantarón, B.; Marín, D.M.; Martín-Bermúdez, N.; Ortés-Gómez, R.; et al. Cost-Effectiveness of the Comprehensive Interdisciplinary Program-Care in Informal Caregivers of People with Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 15243. [Google Scholar] [CrossRef] [PubMed]
- Hurd, M.D.; Martorell, P.; Delavande, A.; Mullen, K.J.; Langa, K.M. Monetary Costs of Dementia in the United States. N. Engl. J. Med. 2013, 368, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roqué IFiguls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Cosp, X.B.; Cullum, S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2015, 2015, CD010783. [Google Scholar] [CrossRef]
- Parnetti, L.; Chipi, E.; Salvadori, N.; D’Andrea, K.; Eusebi, P. Prevalence and risk of progression of preclinical Alzheimer’s disease stages: A systematic review and meta-analysis. Alzheimers Res. Ther. 2019, 11, 7. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Z.; Huang, F.; Su, C.; Du, W.; Jiang, H.; Wang, H.; Wang, J.; Wang, F.; Su, W.; et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: A cross-sectional study. BMC Psychiatry 2021, 21, 485. [Google Scholar] [CrossRef]
- Assessing Risk for Alzheimer’s Disease. Natl Inst Aging n.d. Available online: https://www.nia.nih.gov/health/assessing-risk-alzheimers-disease (accessed on 5 December 2022).
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef]
- Clark, D.G.; McLaughlin, P.M.; Woo, E.; Hwang, K.; Hurtz, S.; Ramirez, L.; Eastman, J.; Dukes, R.M.; Kapur, P.; DeRamus, T.P.; et al. Novel verbal fluency scores and structural brain imaging for prediction of cognitive outcome in mild cognitive impairment. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2016, 2, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Burdick, H.; Pino, E.; Gabel-Comeau, D.; Gu, C.; Roberts, J.; Le, S.; Slote, J.; Saber, N.; Pellegrini, E.; Green-Saxena, A.; et al. Validation of a machine learning algorithm for early severe sepsis prediction: A retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461US hospitals. BMC Med. Inform. Decis. Mak. 2020, 20, 276. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.K.; Smith, A.M.; Walsh, J.R. Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Sci. Rep. 2019, 9, 13622. [Google Scholar] [CrossRef] [PubMed]
- Garikipati, A.; Ciobanu, M.; Singh, N.P.; Barnes, G.; Decurzio, J.; Mao, Q.; Das, R. Clinical Outcomes of a Hybrid Model Approach to Applied Behavioral Analysis Treatment. Cureus 2023, 15, e36727. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, C.; Singh, V.; Xu, G.; Johnson, S.C. Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage 2011, 55, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Allen, A.; Calvert, J.; Palevsky, P.M.; Braden, G.; Patel, S.; Pellegrini, E.; Green-Saxena, A.; Hoffman, J.; Das, R. Convolutional Neural Network Model for Intensive Care Unit Acute Kidney Injury Prediction. Kidney Int. Rep. 2021, 6, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, J.; Garikipati, A.; Dinenno, F.A.; Ciobanu, M.; Barnes, G.; Browning, E.; DeCurzio, J.; Mao, Q.; Das, R. Machine learning determination of applied behavioral analysis treatment plan type. Brain Inform. 2023, 10, 7. [Google Scholar] [CrossRef]
- Massetti, N.; Russo, M.; Franciotti, R.; Nardini, D.; Mandolini, G.M.; Granzotto, A.; Bomba, M.; Delli Pizzi, S.; Mosca, A.; Scherer, R.; et al. A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum 1. J. Alzheimers Dis. 2022, 85, 1639–1655. [Google Scholar] [CrossRef]
- Mohamadlou, H.; Panchavati, S.; Calvert, J.; Lynn-Palevsky, A.; Le, S.; Allen, A.; Pellegrini, E.; Green-Saxena, A.; Barton, C.; Fletcher, G.; et al. Multicenter validation of a machine-learning algorithm for 48-h all-cause mortality prediction. Health Inform. J. 2020, 26, 1912–1925. [Google Scholar] [CrossRef]
- Ryan, L.; Mataraso, S.; Siefkas, A.; Pellegrini, E.; Barnes, G.; Green-Saxena, A.; Hoffman, J.; Calvert, J.; Das, R. A Machine Learning Approach to Predict Deep Venous Thrombosis Among Hospitalized Patients. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029621991185. [Google Scholar] [CrossRef]
- Thapa, R.; Garikipati, A.; Ciobanu, M.; Singh, N.; Browning, E.; DeCurzio, J.; Barnes, G.; Dinenno, F.A.; Mao, Q.; Das, R. Machine Learning Differentiation of Autism Spectrum Sub-Classifications. J. Autism Dev. Disord. 2023, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Iqbal, Z.; Garikipati, A.; Siefkas, A.; Hoffman, J.; Mao, Q.; Das, R. Early prediction of severe acute pancreatitis using machine learning. Pancreatology 2022, 22, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.C.; Campolo, M.; Labate, D.; Morabito, G.; Bonanno, L.; Bramanti, A.; De Salvo, S.; Marra, A.; Bramanti, P. A Longitudinal EEG Study of Alzheimer’s Disease Progression Based on A Complex Network Approach. Int. J. Neural Syst. 2015, 25, 1550005. [Google Scholar] [CrossRef] [PubMed]
- Orovas, C.; Orovas, E.; Dagla, M.; Daponte, A.; Rigas, N.; Ougiaroglou, S.; Iatrakis, G.; Antoniou, E. Neural Networks for Early Diagnosis of Postpartum PTSD in Women after Cesarean Section. Appl. Sci. 2022, 12, 7492. [Google Scholar] [CrossRef]
- Mallo, S.C.; Valladares-Rodriguez, S.; Facal, D.; Lojo-Seoane, C.; Fernández-Iglesias, M.J.; Pereiro, A.X. Neuropsychiatric symptoms as predictors of conversion from MCI to dementia: A machine learning approach. Int. Psychogeriatr. 2020, 32, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, T.M.; Abe, M.S.; Komendzinski, T.; Sugimoto, H.; Narebski, S.; Otake-Matsuura, M. Machine learning approach for early onset dementia neurobiomarker using EEG network topology features. Front. Hum. Neurosci. 2023, 17, 1155194. [Google Scholar] [CrossRef] [PubMed]
- Spasov, S.; Passamonti, L.; Duggento, A.; Liò, P.; Toschi, N. A parameter-efficient deep learning approach to predictconversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage 2019, 189, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Marcisz, A.; Polanska, J. Can T1-Weighted Magnetic Resonance Imaging Significantly Improve Mini-Mental State Examination-Based Distinguishing Between Mild Cognitive Impairment and Early-Stage Alzheimer’s Disease? J. Alzheimers Dis. 2023, 92, 941–957. [Google Scholar] [CrossRef]
- Peng, J.; Wang, W.; Qiaowei, S.; Jie, H.; Hui, J.; Xue, Q.; Zhongyu, Y.; Yuguo, W.; Zhenyu, S. 18F-FDG-PET Radiomics Based on White Matter Predicts The Progression of Mild Cognitive Impairment to Alzheimer Disease: A Machine Learning Study. Acad. Radiol. 2023, 30, 1874–1884. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zhang, Y.; Li, Q. Alzheimer’s Disease Neuroimaging Initiative. Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis. Med. Image Anal. 2023, 84, 102698. [Google Scholar] [CrossRef]
- Martínez-Torteya, A.; Treviño, V.; Tamez-Peña, J.G. Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment. Biomed. Res. Int. 2015, 2015, 961314. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13—17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- ADNI|Alzheimer’s Disease Neuroimaging Initiative n.d. Available online: https://adni.loni.usc.edu/ (accessed on 26 July 2023).
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Innes, K.; Sambamoorthi, U. Association of osteoarthritis and pain with Alzheimer’s Diseases and Related Dementias among older adults in the United States. Osteoarthr. Cartil. 2019, 27, 1470–1480. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 2019, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.A.; Potashkin, J.A. The Impact of Disease Comorbidities in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 631770. [Google Scholar] [CrossRef] [PubMed]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion. 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Mendez, M.F. Up to Date. Mental Status Scales to Evaluate Cognition. Available online: https://www.uptodate.com/contents/mental-status-scales-to-evaluate-cognition#!.UpToDate2023 (accessed on 23 July 2023).
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Rawat, A.S.; Bijalwan, A.; Bahuguna, H. Application of Multi Layer (Perceptron) Artificial Neural Network in the Diagnosis System: A Systematic Review. In Proceedings of the 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE), San Salvador, El Salvador, 22–24 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Herrin, J.; Abraham, N.S.; Yao, X.; Noseworthy, P.A.; Inselman, J.; Shah, N.D.; Ngufor, C. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. JAMA Netw. Open 2021, 4, e2110703. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, X. Development and validation of an XGBoost model to predict 5-year survival in elderly patients with intrahepatic cholangiocarcinoma after surgery: A SEER-based study. J. Gastrointest. Oncol. 2022, 13, 3290–3299. [Google Scholar] [CrossRef]
- Welcome to Python.org. PythonOrg 2023. Available online: https://www.python.org/ (accessed on 1 December 2023).
- NumPy n.d. Available online: https://numpy.org/ (accessed on 1 December 2023).
- Matplotlib—Visualization with Python n.d. Available online: https://matplotlib.org/ (accessed on 1 December 2023).
- Scikit-Learn. Scikit-Learn n.d. Available online: https://scikit-learn/stable/about.html (accessed on 3 November 2023).
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Goodarzi, Z.; Ismail, Z. Neuropsychiatric Aspects of Alzheimer’s Disease. Pract Neurol 2019. Available online: https://practicalneurology.com/articles/2019-june/neuropsychiatric-aspects-of-alzheimers-disease (accessed on 8 December 2022).
- Cognitive Assessment Tools. Alzheimers Dis Dement n.d. Available online: https://alz.org/professionals/health-systems-medical-professionals/clinical-resources/cognitive-assessment-tools (accessed on 8 December 2022).
- Grassi, M.; Rouleaux, N.; Caldirola, D.; Loewenstein, D.; Schruers, K.; Perna, G.; Dumontier, M.; Alzheimer’s Disease Neuroimaging Initiative. A Novel Ensemble-Based Machine Learning Algorithm to Predict the Conversion From Mild Cognitive Impairment to Alzheimer’s Disease Using Socio-Demographic Characteristics, Clinical Information, and Neuropsychological Measures. Front. Neurol. 2019, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Bucholc, M.; Titarenko, S.; Ding, X.; Canavan, C.; Chen, T. A hybrid machine learning approach for prediction of conversion from mild cognitive impairment to dementia. Expert. Syst. Appl. 2023, 217, 119541. [Google Scholar] [CrossRef]
- Julayanont, P.; Brousseau, M.; Chertkow, H.; Phillips, N.; Nasreddine, Z.S. Montreal Cognitive Assessment Memory Index Score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. J. Am. Geriatr. Soc. 2014, 62, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Zhou, X.; Shang, Y.; Xu, F.; Zhang, J.; He, J.; Zhao, F.; Du, B.; Wang, X.; et al. Validity of the MemTrax Memory Test Compared to the Montreal Cognitive Assessment in the Detection of Mild Cognitive Impairment and Dementia due to Alzheimer’s Disease in a Chinese Cohort. J. Alzheimers Dis. 2021, 80, 1257–1267. [Google Scholar] [CrossRef]
- Lin, K.A.; Choudhury, K.R.; Rathakrishnan, B.G.; Marks, D.M.; Petrella, J.R.; Doraiswamy, P.M. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimers Dement. Transl. Res. Clin. Interv. 2015, 1, 103–110. [Google Scholar] [CrossRef]
- Berezuk, C.; Khan, M.; Callahan, B.L.; Ramirez, J.; Black, S.E.; Zakzanis, K.K.; Alzheimer’s Disease Neuroimaging Initiative. Sex differences in risk factors that predict progression from mild cognitive impairment to Alzheimer’s dementia. J. Int. Neuropsychol. Soc. 2023, 29, 360–368. [Google Scholar] [CrossRef]
12 Months | 24 Months | 48 Months | |||||
---|---|---|---|---|---|---|---|
Demographics (Training Sets) | Non-AD (n= 338) | AD (n = 56) | Non-AD (n = 257) | AD (n = 137) | Non-AD (n = 190) | AD (n = 204) | |
Age (years) | 55–60 | 9 (2.7%) | 4 (7.1%) | 8 (3.1%) | 5 (3.6%) | 7 (3.7%) | 6 (2.9%) |
61–70 | 108 (32.0%) | 10 (17.9%) | 91 (35.4%) | 27 (19.7%) | 73 (38.4%) | 45 (22.1%) | |
71–80 | 160 (47.3%) | 32 (57.1%) | 115 (44.7%) | 77 (56.2%) | 87 (45.8%) | 105 (51.5%) | |
81–90 | 61 (18.0%) | 10 (17.9%) | 43 (16.7%) | 28 (20.4%) | 23 (12.1%) | 48 (23.5%) | |
Sex Assigned at Birth | Female | 128 (37.9%) | 26 (46.4%) | 100 (38.9%) | 54 (39.4%) | 71 (37.4%) | 83 (40.7%) |
Male | 210 (62.1%) | 30 (53.6%) | 157 (61.1%) | 83 (60.6%) | 119 (62.6%) | 121 (59.3%) | |
Race | White | 314 (92.9%) | 54 (96.4%) | 238 (92.6%) | 130 (94.9%) | 178 (93.7%) | 190 (93.1%) |
Black or African American | 11 (3.3%) | 1 (1.8%) | 9 (3.5%) | 3 (2.2%) | 5 (2.6%) | 7 (3.4%) | |
Asian | 8 (2.4%) | 1 (1.8%) | 6 (2.3%) | 3 (2.2%) | 3 (1.6%) | 6 (2.9%) | |
American Indian or Alaskan Native | 1 (0.2%) | 0 (0.0%) | 1 (0.4%) | 0 (0.0%) | 1 (0.5%) | 0 (0.0%) | |
More than one race | 4 (1.2%) | 0 (0.0%) | 3 (1.2%) | 1 (0.7%) | 3 (1.6%) | 1 (0.5%) | |
Ethnicity | Hispanic/Latino | 11 (3.3%) | 1 (1.8%) | 9 (3.5%) | 3 (2.2%) | 6 (3.2%) | 6 (2.9%) |
Not Hispanic/Latino | 327 (96.7%) | 55 (98.2%) | 248 (96.5%) | 134 (97.8%) | 184 (96.8%) | 198 (97.1%) | |
Comorbidities | Diabetes | 28 (8.3%) | 6 (10.7%) | 24 (9.3%) | 10 (7.3%) | 18 (9.5%) | 16 (7.8%) |
Depression | 109 (32.2%) | 14 (25.0%) | 84 (32.7%) | 39 (28.5%) | 59 (31.1%) | 64 (31.4%) | |
Osteoporosis or Osteoarthritis | 81 (24.0%) | 11 (19.6%) | 62 (24.1%) | 30 (21.9%) | 45 (23.7%) | 47 (23.0%) | |
Cerebrovascular Disease | 15 (4.4%) | 2 (3.6%) | 13 (5.1%) | 4 (2.9%) | 8 (4.2%) | 9 (4.4%) | |
Hypertension | 141 (41.7%) | 27 (48.2%) | 108 (42.0%) | 60 (43.8%) | 81 (42.6%) | 87 (42.6%) | |
Hearing or vision impairment | 85 (25.1%) | 10 (17.9%) | 63 (24.5%) | 32 (23.4%) | 47 (24.7%) | 48 (23.5%) | |
Coronary heart disease | 16 (4.7%) | 1 (1.8%) | 15 (5.8%) | 2 (1.5%) | 10 (5.3%) | 7 (3.4%) |
Demographics Age Marital Status | Neuropsychiatric Assessments Alzheimer’s Disease Assessment Scale (ADAS) Mini-Mental State Examination (MMSE) Functional Activities Questionnaire (FAQ) Neuropsychiatric Inventory Questionnaire (NPI-Q) Clinical Dementia Rating (CDR) Geriatric Depression Scale (GDS) Rey Auditory Verbal Learning Test (RAVLT) Neuropsychological Assessment Battery (NAB) ADNI-specific composite scoring Modified Hachinski Ischemic Score |
Family Medical History | |
Comorbidities |
Performance Metrics | |||||||
---|---|---|---|---|---|---|---|
Prediction Window | Modeling Approach | AUROC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) |
12 months | MLA | 0.857 (0.756–0.935) | 0.800 (0.646–0.954) | 0.843 (0.796–0.890) | 0.364 (0.239–0.489) | 0.974 (0.952–0.996) | 0.838 (0.793–0.883) |
LR | 0.740 (0.589–0.877) | 0.800 (0.783–0.817) | 0.686 (0.678–0.693) | 0.267 (0.256–0.278) | 0.960 (0.956–0.964) | 0.700 (0.693–0.707) | |
MLP | 0.829 (0.719–0.934) | 0.800 (0.784–0.816) | 0.771 (0.765–0.778) | 0.364 (0.239–0.489) | 0.974 (0.952–0.996) | 0.838 (0.793–0.883) | |
KNN | 0.789 (0.635–0.921) | 0.900 (0.863–0.937) | 0.557 (0.534–0.580) | 0.225 (0.200–0.250) | 0.975 (0.965–0.985) | 0.600 (0.579–0.621) | |
MMSE Classifier ⧧ | 0.575 (0.334–0.804) | 0.600 (0.270–0.930) | 0.528 (0.415–0.641) | 0.125 (0.023–0.227) | 0.922 (0.841–1.000) | 0.535 (0.429–0.642) | |
24 months | MLA | 0.980 (0.957–0.996) | 0.846 (0.762–0.931) | 1.000 (0.998–1.000) | 1.000 (0.998–1.000) | 0.909 (0.857–0.961) | 0.939 (0.904–0.975) |
LR | 0.957 (0.910–0.988) | 0.816 (0.727–0.904) | 0.952 (0.906–0.999) | 0.939 (0.881–0.998) | 0.851 (0.778–0.924) | 0.888 (0.838–0.937) | |
MLP | 0.960 (0.909–0.991) | 0.789 (0.682–0.897) | 1.000 (0.998–1.000) | 1.000 (0.998–1.000) | 0.840 (0.756–0.924) | 0.900 (0.846–0.954) | |
KNN | 0.975 (0.943–0.996) | 0.789 (0.700–0.879) | 0.976 (0.944–1.000) | 0.968 (0.925–1.000) | 0.837 (0.765–0.908) | 0.888 (0.840–0.935) | |
MMSE Classifier ⧧ | 0.750 (0.642–0.848) | 0.769 (0.626–0.913) | 0.700 (0.574–0.826) | 0.625 (0.476–0.774) | 0.824 (0.710–0.937) | 0.727 (0.632–0.823) | |
48 months | MLA | 0.975 (0.947–0.995) | 0.800 (0.715–0.885) | 1.000 (0.998–1.000) | 1.000 (0.998–1.000) | 0.800 (0.715–0.885) | 0.889 (0.839–0.938) |
LR | 0.964 (0.919–0.994) | 0.816 (0.724–0.908) | 0.976 (0.942–1.000) | 0.969 (0.924–1.000) | 0.854 (0.780–0.929) | 0.900 (0.851–0.949) | |
MLP | 0.965 (0.920–0.995) | 0.895 (0.814–0.976) | 0.976 (0.938–1.000) | 0.971 (0.926–1.000) | 0.911 (0.842–0.980) | 0.938 (0.893–0.982) | |
KNN | 0.944 (0.890–0.979) | 0.789 (0.711–0.868) | 0.952 (0.913–0.992) | 0.938 (0.887–0.988) | 0.833 (0.769–0.897) | 0.875 (0.831–0.919) | |
MMSE Classifier ⧧ | 0.713 (0.601–0.813) | 0.655 (0.518–0.791) | 0.727 (0.584–0.870) | 0.750 (0.617–0.883) | 0.627 (0.483–0.772) | 0.687 (0.588–0.786) |
Performance Metrics | Averaged MLA | MMSE Classifier at 48 Months ⧧ |
---|---|---|
AUROC (95% CI) | 0.965 (0.927–0.990) | 0.713 (0.601–0.813) |
Sensitivity (95% CI) | 0.800 (0.734–0.866) | 0.655 (0.518–0.791) |
Specificity (95% CI) | 0.955 (0.915–0.993) | 0.727 (0.584–0.870) |
PPV (95% CI) | 0.957 (0.920–0.993) | 0.750 (0.617–0.883) |
NPV (95% CI) | 0.792 (0.724–0.861) | 0.627 (0.483–0.772) |
Accuracy (95% CI) | 0.869 (0.827–0.910) | 0.687 (0.688–0.786) |
12 Months | 24 Months | 48 Months |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adelson, R.P.; Garikipati, A.; Maharjan, J.; Ciobanu, M.; Barnes, G.; Singh, N.P.; Dinenno, F.A.; Mao, Q.; Das, R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease. Diagnostics 2024, 14, 13. https://doi.org/10.3390/diagnostics14010013
Adelson RP, Garikipati A, Maharjan J, Ciobanu M, Barnes G, Singh NP, Dinenno FA, Mao Q, Das R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease. Diagnostics. 2024; 14(1):13. https://doi.org/10.3390/diagnostics14010013
Chicago/Turabian StyleAdelson, Robert P., Anurag Garikipati, Jenish Maharjan, Madalina Ciobanu, Gina Barnes, Navan Preet Singh, Frank A. Dinenno, Qingqing Mao, and Ritankar Das. 2024. "Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease" Diagnostics 14, no. 1: 13. https://doi.org/10.3390/diagnostics14010013
APA StyleAdelson, R. P., Garikipati, A., Maharjan, J., Ciobanu, M., Barnes, G., Singh, N. P., Dinenno, F. A., Mao, Q., & Das, R. (2024). Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease. Diagnostics, 14(1), 13. https://doi.org/10.3390/diagnostics14010013