The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Their Origin
2.2. Antimicrobial Susceptibility Testing
2.3. DNA Extraction, Virulence Factor, and blaOXA Genes Detection
2.4. Statistical Data Analysis
3. Results
3.1. Antimicrobial Susceptibility
3.2. blaOXA Genes Presence
3.3. Virulence Factor Genes Presence and Co-Existence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter Bamannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a Global Pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Ballouz, T.; Aridi, J.; Afif, C.; Irani, J.; Lakis, C.; Nasreddine, R.; Azar, E. Risk Factors, Clinical Presentation, and Outcome of Acinetobacter baumannii Bacteremia. Front. Cell. Infect. Microbiol. 2017, 7, 156. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Nordmann, P. Carbapenem Resistance in Acinetobacter baumannii: Mechanisms and Epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Murray, G.L.; Peleg, A.Y. Acinetobacter baumannii: Evolution of Antimicrobial Resistance-Treatment Options. Semin. Respir. Crit. Care Med. 2015, 36, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Longo, F.; Vuotto, C.; Donelli, G. Biofilm Formation in Acinetobacter baumannii. New Microbiol. 2014, 37, 119–127. [Google Scholar]
- Rumbo, C.; Tomás, M.; Fernández Moreira, E.; Soares, N.C.; Carvajal, M.; Santillana, E.; Beceiro, A.; Romero, A.; Bou, G. The Acinetobacter baumannii Omp33-36 Porin Is a Virulence Factor That Induces Apoptosis and Modulates Autophagy in Human Cells. Infect. Immun. 2014, 82, 4666–4680. [Google Scholar] [CrossRef] [Green Version]
- Smani, Y.; Dominguez-Herrera, J.; Pachón, J. Association of the Outer Membrane Protein Omp33 with Fitness and Virulence of Acinetobacter baumannii. J. Infect. Dis. 2013, 208, 1561–1570. [Google Scholar] [CrossRef] [Green Version]
- Gaddy, J.A.; Arivett, B.A.; McConnell, M.J.; López-Rojas, R.; Pachón, J.; Actis, L.A. Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria Mellonella Caterpillars, and Mice. Infect. Immun. 2012, 80, 1015–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.C.; Hood, I.; Boyd, K.L.; Olson, P.D.; Morrison, J.M.; Carson, S.; Sayood, K.; Iwen, P.C.; Skaar, E.P.; Dunman, P.M. Inactivation of Phospholipase D Diminishes Acinetobacter baumannii Pathogenesis. Infect. Immun. 2010, 78, 1952–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, J.; Bergmann, H.; Göttig, S.; Ebersberger, I.; Averhoff, B. Acinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D. PLoS ONE 2015, 10, e0138360. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 13.0, Valid from 2023-01-01. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf (accessed on 10 February 2023).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Badmasti, F.; Siadat, S.D.; Bouzari, S.; Ajdary, S.; Shahcheraghi, F. Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings. J. Med. Microbiol. 2015, 64 Pt 5, 559–564. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.-S.; Hu, P.; Cai, L.; Fu, B.-Q.; Li, Y.-S.; Lu, S.-Y.; Liu, N.-N.; Ma, X.-L.; Chi, D.; et al. Characterization of Surface Antigen Protein 1 (SurA1) from Acinetobacter baumannii and Its Role in Virulence and Fitness. Vet. Microbiol. 2016, 186, 126–138. [Google Scholar] [CrossRef]
- Dorsey, C.W.; Tomaras, A.P.; Connerly, P.L.; Tolmasky, M.E.; Crosa, J.H.; Actis, L.A. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology 2004, 150 Pt 11, 3657–3667. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chang, Y.; Xu, Y.; Luo, Y.; Wu, L.; Mei, Z.; Li, S.; Wang, R.; Jia, X. Distribution of Virulence-Associated Genes and Antimicrobial Susceptibility in Clinical Acinetobacter baumannii Isolates. Oncotarget 2018, 9, 21663–21673. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.B.; Livermore, D.M. Multiplex PCR for Genes Encoding Prevalent OXA Carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Nguyen, M.; Joshi, S.G. Carbapenem Resistance in Acinetobacter baumannii, and Their Importance in Hospital-Acquired Infections: A Scientific Review. J. Appl. Microbiol. 2021, 131, 2715–2738. [Google Scholar] [CrossRef]
- Ma, C.; McClean, S. Mapping Global Prevalence of Acinetobacter baumannii and Recent Vaccine Development to Tackle It. Vaccines 2021, 9, 570. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)–Annual Epidemiological Report for 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 (accessed on 10 February 2023).
- Vázquez-López, R.; Solano-Gálvez, S.G.; Juárez Vignon-Whaley, J.J.; Abello Vaamonde, J.A.; Padró Alonzo, L.A.; Rivera Reséndiz, A.; Muleiro Álvarez, M.; Vega López, E.N.; Franyuti-Kelly, G.; Álvarez-Hernández, D.A.; et al. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics 2020, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Castilho, S.R.A.; Godoy, C.S.D.M.; Guilarde, A.O.; Cardoso, J.L.; André, M.C.P.; Junqueira-Kipnis, A.P.; Kipnis, A. Acinetobacter baumannii Strains Isolated from Patients in Intensive Care Units in Goiânia, Brazil: Molecular and Drug Susceptibility Profiles. PLoS ONE 2017, 12, e0176790. [Google Scholar] [CrossRef] [Green Version]
- Bahador, A.; Farshadzadeh, Z.; Raoofian, R.; Mokhtaran, M.; Pourakbari, B.; Pourhajibagher, M.; Hashemi, F.B. Association of virulence gene expression with colistin-resistance in Acinetobacter baumannii: Analysis of genotype, antimicrobial susceptibility, and biofilm formation. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 24. [Google Scholar] [CrossRef]
- Jain, M.; Sharma, A.; Sen, M.K.; Rani, V.; Gaind, R.; Suri, J.C. Phenotypic and Molecular Characterization of Acinetobacter baumannii Isolates Causing Lower Respiratory Infections among ICU Patients. Microb. Pathog. 2019, 128, 75–81. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y.; Jiang, S.; Shen, P.; Lu, X.; Xiao, Y. Association between antibiotic consumption and the rate of carbapenem-resistant Gram-negative bacteria from China based on 153 tertiary hospitals data in 2014. Antimicrob. Resist. Infect. Control 2018, 7, 137. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef]
- Vahhabi, A.; Hasani, A.; Rezaee, M.A.; Baradaran, B.; Hasani, A.; Kafil, H.S.; Soltani, E. Carbapenem Resistance in Acinetobacter baumannii Clinical Isolates from Northwest Iran: High Prevalence of OXA Genes in Sync. Iran. J. Microbiol. 2021, 13, 282–293. [Google Scholar] [CrossRef]
- Słoczyńska, A.; Wand, M.E.; Tyski, S.; Laudy, A.E. Analysis of BlaCHDL Genes and Insertion Sequences Related to Carbapenem Resistance in Acinetobacter baumannii Clinical Strains Isolated in Warsaw, Poland. Int. J. Mol. Sci. 2021, 22, 2486. [Google Scholar] [CrossRef]
- Brossard, K.A.; Campagnari, A.A. The Acinetobacter baumannii Biofilm-Associated Protein Plays a Role in Adherence to Human Epithelial Cells. Infect. Immun. 2012, 80, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Monfared, A.M.; Rezaei, A.; Poursina, F.; Faghri, J. Detection of Genes Involved in Biofilm Formation in MDR and XDR Acinetobacter baumannii Isolated from Human Clinical Specimens in Isfahan, Iran. Arch. Clin. Infect. Dis. 2019, 14, e85766. [Google Scholar] [CrossRef] [Green Version]
- Uppalapati, S.R.; Sett, A.; Pathania, R. The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Front. Microbiol. 2020, 11, 589234. [Google Scholar] [CrossRef]
- Hasan, T.; Choi, C.H.; Oh, M.H. Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii. Genom. Inf. 2015, 13, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Aghajani, Z.; Rasooli, I.; Mousavi Gargari, S.L. Exploitation of Two Siderophore Receptors, BauA and BfnH, for Protection against Acinetobacter baumannii Infection. Apmis 2019, 127, 753–763. [Google Scholar] [CrossRef]
- Porbaran, M.; Tahmasebi, H.; Arabestani, M. A Comprehensive Study of the Relationship between the Production of β-Lactamase Enzymes and Iron/Siderophore Uptake Regulatory Genes in Clinical Isolates of Acinetobacter baumannii. Int. J. Microbiol. 2021, 2021, e5565537. [Google Scholar] [CrossRef]
- Eijkelkamp, B.A.; Hassan, K.A.; Paulsen, I.T.; Brown, M.H. Investigation of the Human Pathogen Acinetobacter baumannii under Iron Limiting Conditions. BMC Genom. 2011, 12, 126. [Google Scholar] [CrossRef] [Green Version]
Gene Detected | Primer Sequences 5′→3′ | Tm (°C) | Annealing Temperature (°C) | References |
---|---|---|---|---|
bap | F: AGTTAAAGAAGGGCAAGAAG | 47.7 | 58 | [17] |
R: GGAGCACCACCTAACTGA | 50.3 | |||
surA1 | F: CAATTGGTAGCTGGCGATCA | 51.8 | 58 | [18] |
R: TTAGGCGGGACTCAGCTTTT | 51.8 | |||
basD | F: CTCTTGCATGGCAACACCAC | 53.8 | 60 | [19] |
R: CCAACGAGACCGCTTATGGT | 53.8 | |||
bauA | F: TGGCAAGGTGAAAATGCACG | 51.8 | 60 | [20] |
R: GCCGCATATGCCATCAACTG | 53.8 | |||
pld | F: CCGTCAATTACGCCAAGCTG | 53.8 | 60 | [13] |
R: CTGACGCTACCTGACGGTTT | 53.8 | |||
omp33-36 | F: ATTAGCCATGACCGGTGCTC | 53.8 | 60 | [10] |
R: CCACCCCAAACATGGTCGTA | 53.8 | |||
blaOXA-40 | F: GGTTAGTTGGCCCCCTTAA | 51.8 | 58 | [21] |
R: AGTTGAGCGAAAAGGGGATT | 49.7 | |||
blaOXA-23 | F: GATCGGATTGGAGAACCAGA | 50.3 | 58 | [21] |
R: ATTTCTGACCGCATTTCCAT | 47.7 |
Number (%) of Strains | |||
---|---|---|---|
Antimicrobial | Susceptible | Susceptible, Increased Exposure | Resistant |
Imipenem (IPM) | 0 (0.0) | 2 (2.0) | 98 (98.0) |
Meropenem (MEM) | 2 (2.0) | 1 (1.0) | 97 (97.0) |
Gentamicin (GEN) 1 | 21 (21.9) | 0 (0.0) | 75 (78.1) |
Amikacin (AMK) | 17 (17.0) | 5 (5.0) | 78 (78.0) |
Tobramycin (NN) | 22 (22.0) | 0 (0.0) | 78 (78.0) |
Ciprofloxacin (CIP) | 0 (0.0) | 0 (0.0) | 100 (100.0) |
Levofloxacin (LEV) | 0 (0.0) | 0 (0.0) | 100 (100.0) |
Trimethoprim/sulfamethoxazole (SXT) | 2 (2.0) | 0 (0.0) | 98 (98.0) |
Colistin (COL) | 90 (90.0) | 0 (0.0) | 10 (10.0) |
Profile | IPM | MEM | GEN 1 | AMK | NN | CIP | LEV | SXT | COL | blaOXA | Number (%) of Strains (n = 100) |
---|---|---|---|---|---|---|---|---|---|---|---|
I | R | R | R | R | R | R | R | R | S | blaOXA-23 | 24 (24.0) |
II | R | R | R | R | R | R | R | R | S | blaOXA-40 | 20 (20.0) |
III | R | R | S | R | R | R | R | R | S | blaOXA-40 | 10 (10.0) |
IV | R | R | R | S | S | R | R | R | S | blaOXA-40 | 9 (9.0) |
V | R | R | S | S | S | R | R | R | S | blaOXA-40 | 4 (4.0) |
VI | R | R | R | I | R | R | R | R | S | blaOXA-40 | 4 (4.0) |
VII | R | R | R | R | S | R | R | R | S | blaOXA-23 | 4 (4.0) |
VIII | R | R | S | R | R | R | R | R | S | blaOXA-23 | 4 (4.0) |
IX | R | R | R | R | R | R | R | R | R | blaOXA-23 | 3 (3.0) |
X | R | R | R | R | R | R | R | R | R | blaOXA-40 | 3 (3.0) |
XI | R | R | R | S | S | R | R | R | R | blaOXA-40 | 2 (2.0) |
XII | R | R | R | R | R | R | R | R | S | - | 1 (1.0) |
XIII | R | R | R | R | R | R | R | S | S | blaOXA-40 | 1 (1.0) |
XIV | R | R | R | S | S | R | R | R | S | blaOXA-23 | 1 (1.0) |
XV | R | R | R | R | S | R | R | R | S | blaOXA-40 | 1 (1.0) |
XVI | R | R | S | R | R | R | R | R | R | blaOXA-40 | 1 (1.0) |
XVII | I | I | R | R | R | R | R | R | S | - | 1 (1.0) |
XVIII | I | S | R | R | R | R | R | R | S | - | 1 (1.0) |
XIX | R | S | S | S | S | R | R | R | R | blaOXA-40 | 1 (1.0) |
XX | R | R | S | I | R | R | R | R | S | blaOXA-40 | 1 (1.0) |
XXI 1 | R | R | R | R | R | R | R | S | blaOXA-23 | 3 (3.0) | |
XXII 1 | R | R | R | R | R | R | S | S | blaOXA-40 | 1 (1.0) |
Clinical Material | blaOXA-40 | blaOXA-23 | blaOXA-40/23-Negative | Total (n = 100) |
---|---|---|---|---|
RTI | 23 (50.0%) | 22 (47.8%) | 1 (2.2%) | 46 (46.0%) |
Other origin 1 | 39 (72.2%) | 13 (24.1%) | 2 (3.7%) | 54 (54.0%) |
Number (%) of Strains with a Particular Virulence Factor Gene | ||||||
---|---|---|---|---|---|---|
bap | surA1 | basD | bauA | pld | omp33-36 | |
blaOXA-40 (n = 62) | 62 (100.0) | 62 (100.0) | 62 (100.0) | 0 (0.0) | 62 (100.0) | 0 (0.0) |
blaOXA-23 (n = 35) | 35 (100.0) | 35 (100.0) | 34 (97.1) | 0 (0.0) | 34 (97.1) | 0 (0.0) |
blaOXA-40/23-negative (n = 3) | 3 (100.0) | 3 (100.0) | 3 (100.0) | 0 (0.0) | 3 (100.0) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depka, D.; Bogiel, T.; Rzepka, M.; Gospodarek-Komkowska, E. The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection. Diagnostics 2023, 13, 1036. https://doi.org/10.3390/diagnostics13061036
Depka D, Bogiel T, Rzepka M, Gospodarek-Komkowska E. The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection. Diagnostics. 2023; 13(6):1036. https://doi.org/10.3390/diagnostics13061036
Chicago/Turabian StyleDepka, Dagmara, Tomasz Bogiel, Mateusz Rzepka, and Eugenia Gospodarek-Komkowska. 2023. "The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection" Diagnostics 13, no. 6: 1036. https://doi.org/10.3390/diagnostics13061036
APA StyleDepka, D., Bogiel, T., Rzepka, M., & Gospodarek-Komkowska, E. (2023). The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection. Diagnostics, 13(6), 1036. https://doi.org/10.3390/diagnostics13061036