Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Raza, T.; Ullah, S.R.; Mehmood, K.; Andleeb, S. Vancomycin resistant Enterococci: A brief review. JPMA J. Pak. Med. Assoc. 2018, 68, 768–772. [Google Scholar] [PubMed]
- Gupta, V.; Singla, N.; Behl, P.; Sahoo, T.; Chander, J. Antimicrobial susceptibility pattern of vancomycin resistant enterococci to newer antimicrobial agents. Indian J. Med. Res. 2015, 141, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Depardieu, F.; Perichon, B.; Courvalin, P. Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J. Clin. Microbiol. 2004, 42, 5857–5860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phukan, C.; Lahkar, M.; Ranotkar, S.; Saikia, K.K. Emergence of vanA gene among vancomycin-resistant enterococci in a tertiary care hospital of North-East India. Indian J. Med. Res. 2016, 143, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Barman, J.; Nath, R.; Saikia, L. Drug resistance in Enterococcus species in a tertiary level hospital in Assam, India. Indian J. Med. Res. 2016, 143, 107–110. [Google Scholar] [CrossRef]
- Kumar, S.; Bandyoapdhyay, M.; Chatterjee, M.; Mukhopadhyay, P.; Poddar, S.; Banerjee, P. The first linezolid-resistant Enterococcus faecium in India: High level resistance in a patient with no previous antibiotic exposure. Avicenna J. Med. 2014, 4, 13. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E. Pandrug Resistance (PDR), Extensive Drug Resistance (XDR), and Multidrug Resistance (MDR) among Gram-Negative Bacilli: Need for International Harmonization in Terminology. Clin. Infect. Dis. 2008, 46, 1121–1122. [Google Scholar] [CrossRef] [Green Version]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. MMBR 2014, 78, 510–543. [Google Scholar] [CrossRef] [Green Version]
- Reyes, K.; Bardossy, A.C.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2016, 30, 953–965. [Google Scholar] [CrossRef]
- Denny, J.; Munro, C.L. Chlorhexidine Bathing Effects on Health-Care-Associated Infections. Biol. Res. Nurs. 2017, 19, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Clinical & Laboratory Standards Institute. CLSI in 2017 [Internet]. Available online: https://clsi.org/2017/ (accessed on 10 August 2022).
- Bhatt, P.; Sahni, A.K.; Praharaj, A.K.; Grover, N.; Kumar, M.; Chaudhari, C.N.; Khajuria, A. Detection of glycopeptide resistance genes in enterococci by multiplex PCR. Med. J. Armed Forces India 2015, 71, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, A.; Pal, N.; Sarkar, S.; Gupta, M. Antibiotic resistance pattern of Enterococci isolates from nosocomial infections in a tertiary care hospital in Eastern India. J. Nat. Sci. Biol. Med. 2015, 6, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, S.; Singh, A.; Verma, R.K.; Singh, D.P.; Kumari, S. Characterization, speciation and antimicrobial resistance pattern of Enterococcus species isolated from clinical specimens at a rural tertiary care hospital. Int. J. Res. Med. Sci. 2017, 5, 3484. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.C.; Cockerill, F.R.; Patel, R. Clinical and Epidemiological Features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum Bacteremia: A Report of 20 Cases. Clin. Infect. Dis. 2001, 32, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, P.; Patel, A.; Sahni, A.K.; Praharaj, A.K.; Grover, N.; Chaudhari, C.N.; Das, N.K.; Kulkarni, M. Emergence of multidrug resistant enterococci at a tertiary care centre. Med. J. Armed Forces India 2015, 71, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Praharaj, I.; Sujatha, S.; Parija, S.C. Phenotypic & genotypic characterization of vancomycin resistant Enterococcus isolates from clinical specimens. Indian J. Med. Res. 2013, 138, 549–556. [Google Scholar]
- Fernandes, S.C.; Dhanashree, B. Drug resistance & virulence determinants in clinical isolates of Enterococcus species. Indian J. Med. Res. 2013, 137, 981–985. [Google Scholar]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. N. Am. 2020, 34, 751–771. [Google Scholar] [CrossRef]
- Emaneini, M.; Hosseinkhani, F.; Jabalameli, F.; Nasiri, M.J.; Dadashi, M.; Pouriran, R.; Beigverdi, R. Prevalence of vancomycin-resistant Enterococcus in Iran: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2016, 35, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Melese, A.; Genet, C.; Andualem, T. Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, P.P.; Dey, S.; Adhikari, L.; Sen, A. Detection of vancomycin resistance in enterococcus species isolated from clinical samples and feces of colonized patients by phenotypic and genotypic methods. Indian J. Pathol. Microbiol. 2016, 59, 188–193. [Google Scholar] [CrossRef]
- Adhikari, L. High-level Aminoglycoside Resistance and Reduced Susceptibility to Vancomycin in Nosocomial Enterococci. J. Glob. Infect. Dis. 2010, 2, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Li, G.; Wang, W. Prevalence and antimicrobial resistance of Enterococcus species: A hospital-based study in China. Int. J. Environ. Res. Public Health 2014, 11, 3424–3442. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.B.; Nadeau, L. Fosfomycin Susceptibility in Multidrug-Resistant Enterobacteriaceae Species and Vancomycin-Resistant Enterococci Urinary Isolates. Can. J. Hosp. Pharm. 2017, 70, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Aktas, G. In vitro efficacy of vancomycin combined with fosfomycin against Vancomycin-Resistant Enterococci strains. Pak. J. Med. Sci. 2020, 36, 281–285. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, Y.; Xu, H.; Jin, X.; Zhang, L.; Ying, S.; Yu, W.; Qiu, Y. In vitro Antimicrobial Activity of Fosfomycin, Rifampin, Vancomycin, Daptomycin Alone and in Combination Against Vancomycin-Resistant Enterococci. Drug Des. Devel. Ther. 2021, 15, 3049–3055. [Google Scholar] [CrossRef]
- Qu, T.; Shi, K.; Ji, J.; Yang, Q.; Du, X.; Wei, Z.; Yu, Y. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int. J. Antimicrob. Agents 2014, 43, 361–365. [Google Scholar] [CrossRef]
- Das, A.; Banerjee, T.; Anupurba, S. Susceptibility of Nitrofurantoin and Fosfomycin Against Outpatient Urinary Isolates of Multidrug-Resistant Enterococci over a Period of 10 Years from India. Microb. Drug Resist. 2020, 26, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Taji, A.; Heidari, H.; Ebrahim-Saraie, H.S.; Sarvari, J.; Motamedifar, M. High prevalence of vancomycin and high-level gentamicin resistance in Enterococcus faecalis isolates. Acta Microbiol. Immunol. Hung. 2019, 66, 203–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghi, F.; Lohrasbi, V.; Zeighami, H. High incidence of virulence determinants, aminoglycoside and vancomycin resistance in enterococci isolated from hospitalized patients in Northwest Iran. BMC Infect. Dis. 2019, 19, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Number (%) |
---|---|
Urine | 223 (60.11%) |
Blood | 76 (20.48%) |
Pus | 68 (18.33%) |
Tissue | 4 (1.08%) |
Enterococcus Species | Number (%) | No of VRE | Gene Detected |
---|---|---|---|
Enterococcus faecalis | 239 (64.42%) | 14 | VanA |
Enterococcus faecium | 114 (30.72%) | 4 | VanA |
Enterococcus avium | 8 (2.16%) | - | - |
Enterococcus durans | 4 (1.08%) | - | - |
Enterococcus casseliflavus | 4 (1.08%) | 4 | VanC |
Enterococcus gallinarum | 2 (0.54%) | 2 | VanC |
Antimicrobial Agent | Enterococcus spp. (n = 371) | MIC Range μg/mL | MIC90 μg/mL | MIC50 μg/mL |
---|---|---|---|---|
Ampicillin/Penicillin | 86 (23.18%) | ≤2–≥32 | 32 | 32 |
Ciprofloxacin | 97 (26.14%) | ≤0.5–≥8 | 8 | 8 |
Levofloxacin | 99 (26.68%) | ≤0.5–≥8 | 8 | 8 |
High-level gentamicin | 215 (57.95%) | - | - | - |
Vancomycin | 347 (93.53%) | ≤0.5–≥32 | 1 | 0.5 |
Teicoplanin | 353 (95.15%) | ≤0.5–≥32 | 1 | 0.5 |
Linezolid | 371 (99.46%) | ≤0.5–4 | 1 | 0.5 |
Tetracycline | 137 (36.93%) | ≤0.5–≥16 | 16 | 16 |
Fosfomycin (n = 223) | 218 (97.76%) | ≤0.5–512 | 8 | 2 |
Nitrofurantoin (n = 223) | 192 (86.1%) | ≤16–256 | 128 | 16 |
Erythromycin (n = 148) | 62 (41.89%) | ≤0.5–≥8 | 8 | 0.5 |
Chloramphenicol (n = 148) | 76 (51.35%) | - | - | - |
Antimicrobial Agent | E. faecalis (n = 239) (No Indicates Susceptible Isolates) | E. faecium (n = 114) (No Indicates Susceptible Isolates) | p Value |
---|---|---|---|
Ampicillin | 72 | 14 | 0.0002 |
Ciprofloxacin | 65 | 32 | 0.898 |
Levofloxacin | 69 | 30 | 0.704 |
High-level gentamicin | 142 | 73 | 0.417 |
Nitrofurantoin | 151 | 41 | 0.0001 |
Tetracycline | 98 | 39 | 0.243 |
Erythromycin | 41 | 21 | 0.766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, M.; Sarkar, R.; Sarkar, S.; Sengupta, M.; Ghosh, S.; Banerjee, P. Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India. Diagnostics 2023, 13, 945. https://doi.org/10.3390/diagnostics13050945
Sengupta M, Sarkar R, Sarkar S, Sengupta M, Ghosh S, Banerjee P. Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India. Diagnostics. 2023; 13(5):945. https://doi.org/10.3390/diagnostics13050945
Chicago/Turabian StyleSengupta, Mallika, Riya Sarkar, Soma Sarkar, Manideepa Sengupta, Sougata Ghosh, and Parthajit Banerjee. 2023. "Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India" Diagnostics 13, no. 5: 945. https://doi.org/10.3390/diagnostics13050945
APA StyleSengupta, M., Sarkar, R., Sarkar, S., Sengupta, M., Ghosh, S., & Banerjee, P. (2023). Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India. Diagnostics, 13(5), 945. https://doi.org/10.3390/diagnostics13050945