Association of Clinical and Radiological Features with Disease Severity of Symptomatic Immune Checkpoint Inhibitor-Related Pneumonitis
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Chest CT Examination
2.3. Evaluation of Chest CT Findings
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics and Clinical Features
3.2. Radiological Features
3.3. Diagnostic Performance of Three Manual Scores and the Combination Score for Severe CIP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICI | immune checkpoint inhibitor |
CIP | checkpoint inhibitor-related pneumonitis |
CT | computed tomography |
CTCAE | Common Terminology Criteria for Adverse Events |
PD-1 | programmed death-1 |
GGO | ground-glass opacity |
OP | organizing pneumonia |
NSIP | nonspecific interstitial pneumonia |
HP | hypersensitivity pneumonitis |
AIP | acute interstitial pneumonia |
ARDS | acute respiratory distress syndrome |
ROC | the receiver operating characteristic |
AUC | the area under the receiver operating characteristic curve |
References
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F.; et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Khoja, L.; Day, D.; Chen, T.W.-W.; Siu, L.L.; Hansen, A.R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Shankar, B.; Zhang, J.; Naqash, A.R.; Forde, P.M.; Feliciano, J.L.; Marrone, K.A.; Ettinger, D.S.; Hann, C.L.; Brahmer, J.R.; Ricciuti, B.; et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 2020, 6, 1952–1956. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.; Yang, F.; Qi, X.; Wang, X.; Guan, X.; Shen, C.; Duma, N.; Aguilera, J.V.; Chintakuntlawar, A.; et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: A systematic review and meta-analysis. JAMA Oncol. 2019, 5, 1008–1019. [Google Scholar] [CrossRef]
- Wang, D.; Salem, J.-E.; Cohen, J.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE). National Institutes of Health, National Cancer Institute. 2019. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (accessed on 1 May 2019).
- Suresh, K.; Naidoo, J.; Lin, C.T.; Danoff, S. Immune checkpoint immunotherapy for non-small cell lung cancer: Benefits and pulmonary toxicities. Chest 2018, 154, 1416–1423. [Google Scholar] [CrossRef]
- Sears, C.R.; Peikert, T.; Possick, J.D.; Naidoo, J.; Nishino, M.; Patel, S.P.; Camus, P.; Gaga, M.; Garon, E.B.; Gould, M.K.; et al. Knowledge gaps and research priorities in immune checkpoint inhibitor-related pneumonitis. an official American Thoracic Society Research Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e31–e43. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Zhang, X.; Si, X.; Song, P.; Xiao, Y.; Yang, X.; Song, L.; Shi, J.; Zhao, H.; et al. Clinical characteristics and management of immune checkpoint inhibitor-related pneumonitis: A single-institution retrospective study. Cancer Med. 2021, 10, 188–198. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Johkoh, T.; Lee, K.S.; Nishino, M.; Travis, W.D.; Ryu, J.H.; Lee, H.Y.; Ryerson, C.J.; Franquet, T.; Bankier, A.A.; Brown, K.K.; et al. Chest CT diagnosis and clinical management of drug-related pneumonitis in patients receiving molecular targeting agents and immune checkpoint inhibitors: A position paper from the Fleischner Society. Chest 2021, 159, 1107–1125. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology. Management of Immunotherapy-Related Toxicity. (Version 1.2020). 2020. Available online: https://www.nccn.org (accessed on 28 January 2021).
- Delaunay, M.; Cadranel, J.; Lusque, A.; Meyer, N.; Gounant, V.; Moro-Sibilot, D.; Michot, J.M.; Raimbourg, J.; Girard, N.; Guisier, F.; et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur. Respir. J. 2017, 50, 1700050. [Google Scholar] [CrossRef]
- Nishino, M.; Ramaiya, N.H.; Awad, M.M.; Sholl, L.M.; Maattala, J.A.; Taibi, M.; Hatabu, H.; Ott, P.A.; Armand, P.F.; Hodi, F.S. PD-1 inhibitor-related pneumonitis in advanced cancer patients: Radiographic patterns and clinical course. Clin. Cancer Res. 2016, 22, 6051–6060. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Ota, T.; Hayashi, M.; Ishikawa, H.; Otsubo, A.; Shoji, S.; Nozaki, K.; Ichikawa, K.; Kondo, R.; Miyabayashi, T.; et al. Prognostic significance of the radiologic features of pneumonitis induced by anti-PD-1 therapy. Cancer Med. 2020, 9, 3070–3077. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.E.; Chaft, J.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir. Crit. Care Med. 2002, 165, 277–304. [Google Scholar]
- Travis, W.D.; Costabel, U.; Hansell, D.M.; King, T.E., Jr.; Lynch, D.A.; Nicholson, A.E.; Ryerson, C.J.; Ryu, J.H.; Selman, M.; Wells, A.U.; et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 2013, 188, 733–748. [Google Scholar] [CrossRef]
- Kalisz, K.R.; Ramaiya, N.H.; Laukamp, K.R.; Gupta, A. Immune checkpoint inhibitor therapy–related pneumonitis: Patterns and management. Radiographics 2019, 39, 1923–1937. [Google Scholar] [CrossRef]
- Thomas, R.; Chen, Y.H.; Hatabu, H.; Mak, R.H.; Nishino, M. Radiographic patterns of symptomatic radiation pneumonitis in lung cancer patients: Imaging predictors for clinical severity and outcome. Lung Cancer 2020, 145, 132–139. [Google Scholar] [CrossRef]
- Nishino, M.; Brais, L.K.; Brooks, N.V.; Hatabu, H.; Kulke, M.H.; Ramaiya, N.H. Drug-related pneumonitis during mammalian target of rapamycin inhibitor therapy in patients with neuroendocrine tumors: A radiographic pattern-based approach. Eur. J. Cancer 2016, 53, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, D.; Li, C.; Chen, T.; Li, R. High-resolution CT features of the COVID-19 infection in Nanchong City: Initial and follow-up changes among different clinical types. Radiol. Infect. Dis. 2020, 7, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Xu, Y.; Zang, X.; Wu, C.; Gao, J.; Sun, X.; Xie, M.; Ma, X.; Deng, H.; Song, J.; et al. Radiographic features and prognosis of early- and late-onset non-small cell lung cancer immune checkpoint inhibitor-related pneumonitis. BMC Cancer 2021, 21, 634. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Kim, J.; Lee, J.S.; Kim, Y.J.; Kim, S.H.; Lee, Y.J.; Cho, Y.J.; Yoon, H.I.; Lee, J.H.; Lee, C.T.; et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer. Lung Cancer 2018, 125, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Nobashi, T.Y.; Nishimoto, Y.; Kawata, Y.; Yutani, H.; Nakamura, M.; Tsuji, Y.; Yoshida, A.; Sugimoto, A.; Yamamoto, T.; Alam, I.; et al. Clinical and radiological features of immune checkpoint inhibitor-related pneumonitis in lung cancer and non-lung cancers. Br. J. Radiol. 2020, 93, 20200409. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Sholl, L.M.; Hodi, F.S.; Hatabu, H.; Ramaiya, N.H. Anti-PD-1-related pneumonitis during cancer immunotherapy. N. Engl. J. Med. 2015, 373, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Chambers, E.S.; Chong, C.R.; Ramaiya, N.H.; Gray, S.W.; Marcoux, J.P.; Hatabu, H.; Jänne, P.A.; Hodi, F.S.; Awad, M.M. Anti-PD-1 inhibitor-related pneumonitis in non-small cell lung cancer. Cancer Immunol. Res. 2016, 4, 289–293. [Google Scholar] [CrossRef]
- Larsen, B.T.; Chae, J.M.; Dixit, A.S.; Hartman, T.E.; Peikert, T.; Roden, A.C. Clinical and histopathologic features of immune checkpoint inhibitor-related pneumonitis. Am. J. Surg. Pathol. 2019, 43, 1331–1340. [Google Scholar] [CrossRef]
- Nishino, M.; Boswell, E.N.; Hatabu, H.; Ghobrial, I.M.; Ramaiya, N.H. Drug-related pneumonitis during mammalian target of rapamycin inhibitor therapy: Radiographic pattern-based approach in waldenström macroglobulinemia as a paradigm. Oncologist 2015, 20, 1077–1083. [Google Scholar] [CrossRef]
All Patients | Mild CIP | Severe CIP | p Value | |
---|---|---|---|---|
Tumor type | 0.477 | |||
Lung cancer | 21 | 11 (52.4%) | 10 (47.6%) | |
Non-lung cancer | 13 | 9 (69.2%) | 4 (30.8%) | |
Sex | 0.627 | |||
Female | 4 | 3 (75.0%) | 1 (25.0%) | |
Male | 30 | 17 (56.7%) | 13 (43.3%) | |
Age, y | 60 (38–77) | 62 (38–77) | 58 (52–70) | 0.713 |
ECOG | 1.000 | |||
0 | 11 | 7 (63.6%) | 4 (36.4%) | |
1 | 21 | 12 (57.1%) | 9 (42.9%) | |
2 | 2 | 1 (50.0%) | 1 (50.0) | |
Smoking status | 0.880 | |||
Never smoker | 8 | 5(62.5%) | 3 (37.5%) | |
Former smoker | 22 | 12 (54.5%) | 10 (45.5%) | |
Current smoker | 4 | 3 (75.0%) | 1 (25.0%) | |
Pack-years | 40 (4–100) | 40 (4–80) | 30 (20–100) | 0.979 |
Family history of malignancy | 0.477 | |||
Yes | 13 | 9 (69.2%) | 4 (30.8%) | |
No | 21 | 11 (52.4%) | 10 (47.6%) | |
History of fibrosis and emphysema | 1.000 | |||
Yes | 16 | 9 (56.3%) | 7 (43.8%) | |
No | 18 | 11 (61.1%) | 7 (38.9%) | |
History of chest radiation therapy | 0.092 | |||
Yes | 16 | 12(75.0%) | 4 (25.0%) | |
No | 18 | 8 (44.4%) | 10 (55.6%) | |
History of pulmonary lobectomy | 0.202 | |||
Yes | 6 | 2 (33.3%) | 4 (66.7%) | |
No | 28 | 18 (64.3%) | 10 (35.7%) | |
Regimen of immune therapy | 1.000 | |||
Immunotherapy alone | 17 | 10 (58.8%) | 7 (41.2%) | |
Combination therapy | 17 | 10 (58.8%) | 7 (41.2%) | |
Symptoms | ||||
Dyspnea | 27 | 16 (59.3%) | 11 (40.7%) | 1.000 |
Cough | 29 | 17 (58.6%) | 12 (41.4%) | 1.000 |
Wheezing | 19 | 13 (68.4%) | 6 (31.6%) | 0.296 |
Fever | 8 | 0 (0.0%) | 8 (100.0%) | <0.001 |
Chest tightness | 7 | 2 (28.6%) | 5 (71.4%) | 0.097 |
Hemoptysis | 3 | 0 (0.0%) | 3 (100.0%) | 0.061 |
Chest pain | 1 | 0 (0.0%) | 1 (100.0%) | 0.412 |
All Patients | Mild CIP | Severe CIP | p Value | |
---|---|---|---|---|
Lung lobe involved | 3 (1–5) | 2 (1–5) | 4 (1–5) | 0.010 |
Distribution | ||||
Peripheral distribution | 10 | 9 (90.0%) | 1 (10.0%) | 0.024 |
Central distribution | 2 | 2 (100.0%) | 0 (0.0%) | 0.501 |
Mixed distribution | 8 | 5 (62.5%) | 3 (37.5%) | 1.000 |
Diffuse distribution | 14 | 4 (28.6%) | 10 (71.4%) | 0.005 |
Image findings | ||||
Ground-glass opacities | 33 | 19 (57.6%) | 14 (42.4%) | 1.000 |
Consolidation | 29 | 16 (55.2%) | 13(44.8%) | 0.379 |
Reticular opacities | 19 | 8 (42.1%) | 11(57.9%) | 0.038 |
Interlobular septal thickening | 12 | 2 (16.7%) | 10(83.3%) | 0.001 |
Honeycombing | 4 | 0 (0.0%) | 4 (100.0%) | 0.022 |
Pleural effusion | 8 | 2 (25.0%) | 6 (75.0%) | 0.042 |
Radiographic pattern | ||||
OP pattern | 15 | 12 (80.0%) | 3 (20.0%) | 0.038 |
NSIP pattern | 3 | 1 (33.3%) | 2 (66.7%) | 0.555 |
HP pattern | 6 | 6 (100.0%) | 0 (0.0%) | 0.031 |
Bronchiolitis pattern | 1 | 1 (100.0%) | 0 (0.0%) | 1.000 |
AIP/ARDS pattern | 7 | 0 (0.0%) | 7 (100.0%) | 0.001 |
Not applicable | 2 | 0 (0.0%) | 2 (100.0%) | 0.162 |
Cut-Off Value | AUC | 95% (CI) | Sen. | Spe. | Acc. | PPV | NPV | p Value | |
---|---|---|---|---|---|---|---|---|---|
Extent score | 11 | 0.857 | 0.716–0.998 | 0.929 | 0.850 | 0.882 | 0.813 | 0.944 | <0.001 |
Image finding score | 4 | 0.843 | 0.702–0.984 | 0.643 | 0.950 | 0.824 | 0.900 | 0.792 | <0.001 |
Clinical symptom score | 4 | 0.782 | 0.622–0.942 | 0.429 | 1.000 | 0.765 | 1.000 | 0.714 | 0.006 |
Combination score * | 0 | 0.948 | 0.873–1.000 | 0.929 | 0.950 | 0.912 | 0.923 | 0.905 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Tao, X.; Zhao, S.; Li, N.; Wang, S.; Wu, N. Association of Clinical and Radiological Features with Disease Severity of Symptomatic Immune Checkpoint Inhibitor-Related Pneumonitis. Diagnostics 2023, 13, 691. https://doi.org/10.3390/diagnostics13040691
Zhang Q, Tao X, Zhao S, Li N, Wang S, Wu N. Association of Clinical and Radiological Features with Disease Severity of Symptomatic Immune Checkpoint Inhibitor-Related Pneumonitis. Diagnostics. 2023; 13(4):691. https://doi.org/10.3390/diagnostics13040691
Chicago/Turabian StyleZhang, Qian, Xiuli Tao, Shijun Zhao, Ning Li, Shuhang Wang, and Ning Wu. 2023. "Association of Clinical and Radiological Features with Disease Severity of Symptomatic Immune Checkpoint Inhibitor-Related Pneumonitis" Diagnostics 13, no. 4: 691. https://doi.org/10.3390/diagnostics13040691
APA StyleZhang, Q., Tao, X., Zhao, S., Li, N., Wang, S., & Wu, N. (2023). Association of Clinical and Radiological Features with Disease Severity of Symptomatic Immune Checkpoint Inhibitor-Related Pneumonitis. Diagnostics, 13(4), 691. https://doi.org/10.3390/diagnostics13040691