Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Materials
2.3. Methods
2.3.1. Swin Transformer
2.3.2. Tooth Type Enhanced Swin Transformer
2.4. Model Training
2.5. Performance Evaluation
3. Results
3.1. Dataset
3.2. Compared to Typical CNN Methods
3.3. Performance of the Proposed T2S-Transformer
3.4. Comparison with Dentists
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colak, H.; Dulgergil, C.T.; Dalli, M.; Hamidi, M.M. Early childhood caries update: A review of causes, diagnoses, and treatments. J. Nat. Sci. Biol. Med. 2013, 4, 29–38. [Google Scholar] [PubMed]
- Skeie, M.S.; Raadal, M.; Strand, G.V.; Espelid, I. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age—A longitudinal study. Int. J. Paediatr. Dent. 2006, 16, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Zaror, C.; Matamala-Santander, A.; Ferrer, M.; Rivera-Mendoza, F.; Espinoza-Espinoza, G.; Martínez-Zapata, M.J. Impact of early childhood caries on oral health-related quality of life: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2021, 20, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Tzschoppe, M.; Paris, S. Radiographic caries detection: A systematic review and meta-analysis. J. Dent. 2015, 43, 924–933. [Google Scholar] [CrossRef]
- Mertens, S.; Krios, J.; Cantu, A.G.; Arsiwala, L.T.; Schwendicke, F. Artificial intelligence for caries detection: Randomized trial. J. Dent. 2021, 115, 103849. [Google Scholar] [CrossRef] [PubMed]
- Nandeesh, M.; Naveen, B. A literature review on carries detection and classification in dental radiographs. Ind. Eng. J. 2020. [Google Scholar] [CrossRef]
- Jeon, K.J.; Han, S.S.; Lee, C. Application of panoramic radiography with a multilayer imaging program for detecting proximal caries: A preliminary clinical study. Dentomaxillofac. Radiol. 2020, 49, 20190467. [Google Scholar] [CrossRef]
- Basaran, M.; Celik, O.; Bayrakdar, I.S.; Bilgir, E.; Orhan, K.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol. 2022, 38, 363–369. [Google Scholar] [CrossRef]
- Haghanifar, A.; Majdabadi, M.M.; Ko, S.B. PaXNet: Dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier. arXiv 2020, arXiv:2012.13666. [Google Scholar] [CrossRef]
- Bui, T.H.; Hamamoto, K.; Paing, M.P. Deep fusion feature extraction for caries detection on dental panoramic radiographs. Appl. Sci. 2021, 11, 2005. [Google Scholar] [CrossRef]
- Muresan, M.; Barbura, R.; Nedevschi, S. Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques. In Proceedings of the 16th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 3–5 September 2020. [Google Scholar]
- Haghanifar, A.; Majdabadi, M.M.; Ko, S.B. Automated teeth extraction from dental panoramic X-ray images using genetic algorithm. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 12–14 October 2020. [Google Scholar]
- Kaur, R.; Sandhu, R.S.; Gera, A.; Kaur, T. Edge detection in digital panoramic dental radiograph using improved morphological gradient and MATLAB. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation, Bengaluru, India, 17–19 August 2017. [Google Scholar]
- Zhu, H.H.; Cao, Z.; Lian, L.Y.; Ye, G.; Gao, H.; Wu, J. CariesNet: A deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef] [PubMed]
- Thanathornwong, B.; Suebnukarn, S. Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks. Imaging Sci. Dent. 2020, 50, 169. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, S.S.; Kim, Y.H.; Lee, C.; Kim, I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 635–642. [Google Scholar] [CrossRef]
- Chung, M.Y.; Lee, J.; Park, S.; Lee, M.; Lee, C.E. Individual tooth detection and identification from dental panoramic X-ray images via point-wise localization and distance regularization. Artif. Intell. Med. 2021, 111, 101996. [Google Scholar] [CrossRef]
- Saravanan, T.; Raj, M.S.; Gopalakrishnan, K. Identification of early caries in human tooth using histogram and power spectral analysis. Middle-East J. Sci. Res. 2014, 20, 871–875. [Google Scholar]
- Virupaiah, G.; Sathyanarayana, A.K. Analysis of image enhancement techniques for dental caries detection using texture analysis and support vector machine. Int. J. Appl. Sci. Eng. 2020, 17, 75–86. [Google Scholar]
- Li, Z.W.; Liu, F.; Yang, W.J.; Peng, S.H.; Zhou, J. A Survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2021, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Vinayahalingam, S.; Kempers, S.; Limon, L.; Deibel, D.; Maal, T.; Hanisch, M.; Bergé, S.; Xi, T. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 2021, 11, 12609. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.Y.; Zhu, T.; Zhu, F.D.; Zhu, H.H. Deep learning for caries detection and classification. Diagnostics 2021, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, G.; Yin, Q.; Liu, Y.; Zhang, Z.; Sun, J. Context aware convolutional neural network for children caries diagnosis on dental panoramic radiographs. Comput. Math. Methods Med. 2022, 2022, 6029245. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhu, X.; Clifton, D.A. Multimodal learning with transformers: A survey. arXiv 2022, arXiv:2206.06488. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Dutta, A.; Zisserman, A. The VIA annotation software for images, audio and video. In Proceedings of the 27th ACM International Conference on Multimedia, New Nice, France, 21–25 October 2019. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; MIT Press: Long Beach, CA, USA, 2017. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Saravanan, S.; Madivanan, I.; Subashini, B.; Felix, J.W. Prevalence pattern of dental caries in the primary dentition among school children. Indian J. Dent. Res. 2005, 16, 140–146. [Google Scholar] [CrossRef]
- Gjørup, T. The kappa coefficient and the prevalence of a diagnosis. Methods Inf. Med. 1988, 27, 184–186. [Google Scholar] [CrossRef]
- Mazur, M.; Jedliński, M.; Ndokaj, A.; Corridore, D.; Maruotti, A.; Ottolenghi, L.; Guerra, F. Diagnostic drama. use of ICDAS II and fluorescence-based intraoral camera in early occlusal caries detection: A clinical study. Int. J. Environ. Res. Public Health 2020, 17, 2937. [Google Scholar] [CrossRef]
- Mazur, M.; Jedlinski, M.; Vozza, I.; Pasqualotto, D.; Nardi, G.M.; Ottolenghi, L.; Guerra, F. Correlation between Vista Cam, ICDAS-II, X-ray bitewings and cavity extent after lesion excavation: An in vivo pilot study. Minerva Stomatol. 2020, 69, 343–348. [Google Scholar] [CrossRef]
Methods | Accuracy | Precision | Recall | F1 | AUC |
---|---|---|---|---|---|
AlexNet | 0.6040 | 0.6181 | 0.6181 | 0.6181 | 0.6547 |
GoogleNet | 0.6376 | 0.6317 | 0.7217 | 0.6737 | 0.6633 |
SeNet | 0.7836 | 0.8000 | 0.7767 | 0.7882 | 0.8520 |
ResNet | 0.7768 | 0.8056 | 0.8049 | 0.8052 | 0.8490 |
S-Transformer | 0.8272 | 0.8576 | 0.7994 | 0.8275 | 0.8991 |
Methods | Accuracy | Precision | Recall | F1 | AUC |
---|---|---|---|---|---|
S-Transformer | 0.8272 | 0.8576 | 0.7994 | 0.8275 | 0.8991 |
T2S-Transformer | 0.8557 | 0.8832 | 0.8317 | 0.8567 | 0.9223 |
Methods | Accuracy | Precision | Recall | F1 | Time (s) |
---|---|---|---|---|---|
T2S-Transformer | 0.8557 | 0.8832 | 0.8317 | 0.8567 | 0.6897 |
AD | 0.8842 (0.8808, 0.8876) | 0.8509 (0.8473, 0.8545) | 0.9417 (0.9365, 0.9469) | 0.8940 (0.8897, 0.8983) | 64.5000 (69.0000, 60.0000) |
Position | 55 | 54 | 53 | 52 | 51 |
---|---|---|---|---|---|
T2S-Transformer | 0.8667 | 0.9667 | 0.8333 | 0.7000 | 0.7333 |
AD | 0.7667 | 0.9000 | 0.9333 | 0.9333 | 0.9333 |
Position | 61 | 62 | 63 | 64 | 65 |
T2S-Transformer | 0.7000 | 0.7333 | 0.7667 | 1.0000 | 0.9667 |
AD | 0.8333 | 0.9333 | 0.8667 | 0.8667 | 0.8333 |
Position | 75 | 74 | 73 | 72 | 71 |
T2S-Transformer | 0.8966 | 0.9667 | 0.8667 | 0.9333 | 0.8621 |
AD | 0.8276 | 0.9000 | 0.8333 | 1.0000 | 0.9310 |
Position | 81 | 82 | 83 | 84 | 85 |
T2S-Transformer | 0.8667 | 0.8667 | 0.8000 | 0.9655 | 0.8276 |
AD | 0.9333 | 0.9000 | 0.9000 | 0.9310 | 0.7241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yu, G.; Yin, Q.; Yang, J.; Sun, J.; Lv, S.; Shi, Q. Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs. Diagnostics 2023, 13, 689. https://doi.org/10.3390/diagnostics13040689
Zhou X, Yu G, Yin Q, Yang J, Sun J, Lv S, Shi Q. Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs. Diagnostics. 2023; 13(4):689. https://doi.org/10.3390/diagnostics13040689
Chicago/Turabian StyleZhou, Xiaojie, Guoxia Yu, Qiyue Yin, Jun Yang, Jiangyang Sun, Shengyi Lv, and Qing Shi. 2023. "Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs" Diagnostics 13, no. 4: 689. https://doi.org/10.3390/diagnostics13040689
APA StyleZhou, X., Yu, G., Yin, Q., Yang, J., Sun, J., Lv, S., & Shi, Q. (2023). Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs. Diagnostics, 13(4), 689. https://doi.org/10.3390/diagnostics13040689