Anemia in Elderly Patients—The Impact of Hemoglobin Cut-Off Levels on Geriatric Domains
Abstract
1. Background
2. Methods
2.1. Aim of the Study
2.2. Design of the Study
2.3. Inclusion Criteria
2.4. Exclusion Criteria
3. Assessment
4. Statistical Analysis
5. Results
- Anemic group, consisting of 642 patients (37.8% of the sample), of whom 222 males (44% of male population) and 420 females (35.2% of female population);
- Non-anemic group, consisting of 1056 patients (62.2%), of whom 282 males (56%) and 774 females (64.8%).
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2019: Highlights (ST/ESA/SER.A/430); United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- European Commission; Eurostat; Corselli-Nordblad, L.; Strandell, H. Ageing Europe: Looking at the Lives of Older People in the EU: 2020 Edition; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 16 December 2022).
- Panza, F.; Solfrizzi, V.; Lozupone, M.; Barulli, M.R.; D’Urso, F.; Stallone, R.; Dibello, V.; Noia, A.; Di Dio, C.; Daniele, A.; et al. An Old Challenge with New Promises: A Systematic Review on Comprehensive Geriatric Assessment in Long-Term Care Facilities. Rejuvenation Res. 2018, 21, 3–14. [Google Scholar] [CrossRef]
- Salis, F.; Loddo, S.; Zanda, F.; Peralta, M.M.; Serchisu, L.; Mandas, A. Comprehensive Geriatric Assessment: Application and correlations in a real-life cross-sectional study. Front. Med. 2022, 9, 984046. [Google Scholar] [CrossRef] [PubMed]
- Mazya, A.L.; Garvin, P.; Ekdahl, A.W. Outpatient comprehensive geriatric assessment: Effects on frailty and mortality in old people with multimorbidity and high health care utilization. Aging Clin. Exp. Res. 2019, 31, 519–525. [Google Scholar] [CrossRef]
- Loddo, S.; Salis, F.; Rundeddu, S.; Serchisu, L.; Peralta, M.M.; Mandas, A. Nutritional Status and Potentially Inappropriate Medications in Elderly. J. Clin. Med. 2022, 11, 3465. [Google Scholar] [CrossRef]
- Smith, D.L. Anemia in the elderly. Am. Fam. Physician 2000, 62, 1565–1572. [Google Scholar] [PubMed]
- Powers, J.M.; Buchanan, G.R. Diagnosis and management of iron deficiency anemia. Hematol. Oncol. Clin. N. Am. 2014, 28, 729–745, vi–vii. [Google Scholar] [CrossRef]
- Röhrig, G.; Gütgemann, I.; Leischker, A.; Kolb, G. Anämie im Alter—Ein geriatrisches Syndrom? Zweites Positionspapier zur Anämie im Alter der AG Anämie der Deutschen Gesellschaft für Geriatrie [Anemia in the aged—A geriatric syndrome? Second position paper on anemia in the aged by the working group anemia of the German Geriatric Society]. Z Gerontol. Geriatr. 2018, 51, 921–923. (In German) [Google Scholar] [CrossRef]
- Patel, K.V. Epidemiology of anemia in older adults. Semin. Hematol. 2008, 45, 210–217. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Motta, I. Anemia in Clinical Practice-Definition and Classification: Does Hemoglobin Change With Aging? Semin. Hematol. 2015, 52, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R. Anemia and aging: An overview of clinical, diagnostic and biological issues. Blood Rev. 2001, 15, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Busti, F.; Marchi, G.; Lira Zidanes, A.; Castagna, A.; Girelli, D. Treatment options for anemia in the elderly. Transfus. Apher. Sci. 2019, 58, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.D.; Kuchibhatla, M.N.; Cohen, H.J. Impact of anemia on mortality, cognition, and function in community-dwelling elderly. Am. J. Med. 2006, 119, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Semba, R.D.; Guralnik, J.M.; Ershler, W.B.; Bandinelli, S.; Patel, K.V.; Sun, K.; Woodman, R.C.; Andrews, N.C.; Cotter, R.J.; et al. Proinflammatory state, hepcidin, and anemia in older persons. Blood 2010, 115, 3810–3816. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Wawer, A.A.; Gillings, R.; Jennings, A.; Myint, P.K. Iron status in the elderly. Mech. Ageing Dev. 2014, 136–137, 22–28. [Google Scholar] [CrossRef]
- Maio, N.; Zhang, D.L.; Ghosh, M.C.; Jain, A.; santamaria, A.M.; Rouault, T.A. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin. Hematol. 2021, 58, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Besora-Moreno, M.; Llauradó, E.; Tarro, L.; Solà, R. Social and Economic Factors and Malnutrition or the Risk of Malnutrition in the Elderly: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2020, 12, 737. [Google Scholar] [CrossRef]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [PubMed]
- Bethesda (MD) National Library of Medicine (US). Drugs and Lactation Database (Lactmed) [Internet]; Bethesda (MD) National Library of Medicine (US): Bethesda, MD, USA, 2021. [Google Scholar]
- Marchi, G.; Busti, F.; Zidanes, A.L.; Vianello, A.; Girelli, D. Cobalamin Deficiency in the Elderly. Mediterr. J. Hematol. Infect Dis. 2020, 12, e2020043. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Hanna, R.M.; Streja, E.; Kalantar-Zadeh, K. Burden of Anemia in Chronic Kidney Disease: Beyond Erythropoietin. Adv. Ther. 2021, 38, 52–75. [Google Scholar] [CrossRef]
- Gluba-Brzózka, A.; Franczyk, B.; Olszewski, R.; Rysz, J. The Influence of Inflammation on Anemia in CKD Patients. Int. J. Mol. Sci. 2020, 21, 725. [Google Scholar] [CrossRef]
- Anand, S.; Burkenroad, A.; Glaspy, J. Workup of anemia in cancer. Clin. Adv. Hematol. Oncol. 2020, 18, 640–646. [Google Scholar] [PubMed]
- Szczepanek-Parulska, E.; Hernik, A.; Ruchała, M. Anemia in thyroid diseases. Pol. Arch. Intern. Med. 2017, 127, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, J.D. The Physical Examination to Assess for Anemia and Hypovolemia. Med. Clin. N. Am. 2022, 106, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Ren, H.; Wang, J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc. Neurol. 2019, 4, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E. Endocrinology of the Menopause. Endocrinol. Metab. Clin. N. Am. 2015, 44, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Delamater, L.; Santoro, N. Management of the Perimenopause. Clin. Obstet. Gynecol. 2018, 61, 419–432. [Google Scholar] [CrossRef]
- Critchley, H.O.D.; Babayev, E.; Bulun, S.E.; Clark, S.; Garcia-Grau, I.; Gregersen, P.K.; Kilcoyne, A.; Kim, J.J.; Lavender, M.; Marsh, E.E.; et al. Menstruation: Science and society. Am. J. Obstet. Gynecol. 2020, 223, 624–664. [Google Scholar] [CrossRef] [PubMed]
- Addo, O.Y.; Yu, E.X.; Williams, A.M.; Young, M.F.; Sharma, A.J.; Mei, Z.; Kassebaum, N.J.; Jefferds, M.E.D.; Suchdev, P.S. Evaluation of Hemoglobin Cutoff Levels to Define Anemia Among Healthy Individuals. JAMA Netw. Open. 2021, 4, e2119123. [Google Scholar] [CrossRef]
- Gelaw, Y.; Woldu, B.; Melku, M. The Role of Reticulocyte Hemoglobin Content for Diagnosis of Iron Deficiency and Iron Deficiency Anemia, and Monitoring of Iron Therapy: A Literature Review. Clin. Lab. 2019, 65, 190315. [Google Scholar] [CrossRef]
- Kara, O.; Soysal, P.; Smith, L.; Kiskac, M. What are optimum target levels of hemoglobin in older adults? Aging Clin. Exp. Res. 2021, 33, 3173–3181. [Google Scholar] [CrossRef]
- Barrera-Reyes, P.K.; Tejero, M.E. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann. N. Y. Acad. Sci. 2019, 1450, 32–46. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Shulman, K.I. Clock-drawing: Is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 2000, 15, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Smarr, K.L.; Keefer, A.L. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res. 2011, 63 (Suppl. S11), S454–S466. [Google Scholar] [CrossRef]
- Pashmdarfard, M.; Azad, A. Assessment tools to evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in older adults: A systematic review. Med. J. Islam. Repub. Iran. 2020, 34, 33. [Google Scholar] [CrossRef]
- Reuben, D.B.; Siu, A.L. An objective measure of physical function of elderly outpatients. The Physical Performance Test. J. Am. Geriatr. Soc. 1990, 38, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Omaña, H.; Bezaire, K.; Brady, K.; Davies, J.; Louwagie, N.; Power, S.; Santin, S.; Hunter, S.W. Functional Reach Test, Single-Leg Stance Test, and Tinetti Performance-Oriented Mobility Assessment for the Prediction of Falls in Older Adults: A Systematic Review. Phys. Ther. 2021, 101, pzab173. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Parmelee, P.A.; Thuras, P.D.; Katz, I.R.; Lawton, M.P. Validation of the Cumulative Illness Rating Scale in a geriatric residential population. J. Am. Geriatr. Soc. 1995, 43, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.H.; Kao, C.C.; Wang, R.H.; Liu, Y.H. Impacts of multi-morbidity, hemoglobin levels, and frailty on functional disability of older adult residents of long-term care facilities: A structural equation analysis. Geriatr. Gerontol. Int. 2021, 21, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Corona, L.P.; Andrade, F.C.D.; da Silva Alexandre, T.; de Brito, T.R.P.; Nunes, D.P.; de Oliveira Duarte, Y.A. Higher hemoglobin levels are associated with better physical performance among older adults without anemia: A longitudinal analysis. BMC Geriatr. 2022, 22, 233. [Google Scholar] [CrossRef]
- Chen, H.H.; Yeh, H.L.; Tsai, S.J. Association of lower hemoglobin levels with depression, though not with cognitive performance, in healthy elderly men. Psychiatry Clin. Neurosci. 2012, 66, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Toft-Petersen, A.P.; Torp-Pedersen, C.; Weinreich, U.M.; Rasmussen, B.S. Association between hemoglobin and prognosis in patients admitted to hospital for COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2813–2820. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koch, C.G.; Li, L.; Sun, Z.; Hixson, E.D.; Tang, A.S.; Phillips, S.C.; Blackstone, E.H.; Henderson, J.M. From Bad to Worse: Anemia on Admission and Hospital-Acquired Anemia. J. Patient Saf. 2017, 13, 211–216. [Google Scholar] [CrossRef]
- Halawi, R.; Moukhadder, H.; Taher, A. Anemia in the elderly: A consequence of aging? Expert Rev. Hematol. 2017, 10, 327–335. [Google Scholar] [CrossRef]
Study Population: n.1698 | ||
---|---|---|
Variable | Median | IQR |
Age (years) | 80 | 75–85 |
Education (years) | 5 | 3–8 |
BMI | 26.7 | 23.5–30.5 |
MMSE | 21.9 | 16.4–25.7 |
CDT | 4 | 2–7 |
GDS | 7 | 4–11 |
BADL | 76 | 5–92 |
IADL | 2 | 1–5 |
PPT | 10 | 7–15 |
POMA | 14 | 9–20 |
MNA | 21 | 17.5–23 |
CIRS TOT. | 31 | 28–34 |
CIRS ISC | 2.2 | 2–2.4 |
CIRS ICC | 7 | 5–8 |
Hb | 12.6 | 11.6–13.7 |
Hematological Condition | Percentage |
---|---|
History of leukemia | 1.5% |
Severe Chronic Kidney Disease | 4% |
Iron Deficiency a | 9.5% |
Folate Deficiency b | 17.1% |
Vitamin B12 Deficiency c | 6.2% |
Men n.504 | Women n.1194 | Mann–Whitney Test | |||||
---|---|---|---|---|---|---|---|
Median | Min–Max | IQR | Median | Min–Max | IQR | p-Value | |
Age | 80 | 65–96 | 74–84.5 | 80 | 65–100 | 75–85 | 0.0907 |
Education | 5 | 0–23 | 5–8 | 5 | 0–21 | 3–5 | <0.0001 |
MMSE | 23 | 0–30 | 17–26 | 21.5 | 0–30 | 16–25 | 0.0028 |
CDT | 5 | 0–9 | 3–8 | 3 | 0–9 | 2–6 | <0.0001 |
GDS | 5 | 0–15 | 3–8 | 8 | 0–15 | 5–11 | <0.0001 |
BADL | 83 | 1–100 | 63–96.5 | 74 | 0–100 | 55–90 | <0.0001 |
IADL | 2 | 0–8 | 1–5 | 2 | 0–8 | 1–5 | 0.3486 |
PPT | 11 | 0–27 | 7–17 | 9 | 0–28 | 6–14 | <0.0001 |
POMA | 16 | 0–28 | 11–22 | 13 | 0–28 | 9–19 | <0.0001 |
MNA | 21.25 | 2–29 | 18–24.5 | 20.5 | 2–30 | 17.5–23 | <0.0001 |
BMI | 26.45 | 15–51 | 23.5–29 | 26.9 | 15–48 | 23.5–31 | 0.0412 |
CIRS TOT. | 32 | 15–45 | 28–35 | 31 | 5–45 | 28–34 | 0.0573 |
CIRS ISC | 2.23 | 1–3 | 2–2.5 | 2,21 | 1–3 | 2–2.4 | 0.0577 |
CIRS ICC | 7 | 0–12 | 5–8 | 7 | 1–13 | 5–8 | 0.3524 |
Anemic Group n. 642 | Non-Anemic Group n. 1056 | Mann–Whitney Test | |||||
---|---|---|---|---|---|---|---|
Median | Min-Max | IQR | Median | Min-Max | IQR | p-Value | |
Age | 81 | 65–96 | 77–86 | 79 | 65–100 | 74–84 | <0.0001 |
Education | 5 | 0–19 | 3–8 | 5 | 0–23 | 3–8 | 0.0587 |
MMSE | 21.7 | 0–30 | 16–26 | 22 | 0–30 | 17–26 | 0.2722 |
CDT | 3 | 0–9 | 3–8 | 4 | 0–9 | 2–7 | 0.2627 |
GDS | 7 | 0–15 | 3–8 | 7 | 0–15 | 4–11 | 0.2487 |
BADL | 73 | 0–100 | 63–96.5 | 78 | 1–100 | 59–94 | <0.0001 |
IADL | 2 | 0–8 | 1–5 | 3 | 0–8 | 1–5 | 0.0007 |
PPT | 9 | 0–27 | 7–17 | 10 | 0–28 | 7–15 | 0.0278 |
POMA | 14 | 0–28 | 11–22 | 14 | 0–28 | 10–21 | 0.0235 |
MNA | 20 | 6–28.5 | 18–24.5 | 21.25 | 2–30 | 18–23.5 | <0.0001 |
BMI | 26.67 | 15–46 | 23.5–29 | 26.9 | 15–51 | 24–31 | 0.2612 |
CIRS TOT. | 32 | 15–45 | 28–35 | 31 | 16–43 | 27–34 | <0.0001 |
CIRS ISC | 2.29 | 1–3 | 2–2.5 | 2.15 | 1–3 | 2–2.3 | <0.0001 |
CIRS ICC | 7 | 0–13 | 5–8 | 6 | 1–12 | 5–8 | <0.0001 |
Men | Women | χ2 (p-Value) | |
---|---|---|---|
WHO Criteria | 222 (44%) | 420 (35.2%) | 0.0006 |
Cut-off Hb < 12 g/dL | 120 (23.8%) | 420 (35.2%) | <0.0001 |
Cut-off Hb < 13 g/dL | 222 (44%) | 757 (63.4%) | <0.0001 |
Group 1 (Hb < 12 g/dL) n. 540 | Group 3 (Hb ≥ 12 g/dL) n. 1158 | Mann–Whitney Test | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | p-Value | |
Age | 82 | 77–86 | 79 | 74–84 | <0.0001 |
Education | 5 | 3–6,5 | 5 | 3–8 | 0.0012 |
MMSE | 21.4 | 15.65–25.7 | 22 | 16.7–25.7 | 0.0692 |
CDT | 3 | 2–7 | 4 | 2–7 | 0.0863 |
GDS | 8 | 5–11 | 7 | 3.5–11 | 0.0029 |
BADL | 73 | 54–88 | 78 | 59–94 | <0.0001 |
IADL | 2 | 1–4 | 2 | 1–5 | 0.0104 |
PPT | 9 | 6–14 | 10 | 7–15 | 0.0173 |
POMA | 13 | 9–19 | 14 | 10–21 | 0.0036 |
MNA | 19.75 | 17–22.5 | 21 | 18–23.5 | <0.0001 |
BMI | 26.6 | 23.44–30.51 | 26.9 | 23.63–30.61 | 0.3676 |
CIRS TOT. | 32 | 29–35 | 31 | 28–34 | <0.0001 |
CIRS ISC | 2.29 | 2.07–2.5 | 2.19 | 1.93–2.38 | <0.0001 |
CIRS ICC | 7 | 5–8 | 6 | 5–8 | <0.0001 |
Group 2 (Hb < 13 g/dL) n. 979 | Group 4 (Hb ≥ 13 g/dL) n. 719 | Mann–Whitney Test | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | p-Value | |
Age | 81 | 76–86 | 79 | 74–83 | <0.0001 |
Education | 5 | 3–7 | 5 | 4–8 | 0.0007 |
MMSE | 21.7 | 16.2–25.7 | 22.35 | 16.7–25.7 | 0.2832 |
CDT | 3 | 2–7 | 4 | 2–7 | 0.1429 |
GDS | 8 | 4–11 | 7 | 3–11 | 0.0034 |
BADL | 73 | 55–90 | 81 | 61–95 | <0.0001 |
IADL | 2 | 1–5 | 3 | 1–5 | 0.0075 |
PPT | 9 | 6–14 | 11 | 7–16 | 0.0004 |
POMA | 14 | 9–19 | 15 | 10–22 | 0.0038 |
MNA | 20 | 17–22.5 | 21.5 | 18.5–24 | <0.0001 |
BMI | 26.67 | 23.44–30.49 | 27.03 | 23.8–30.71 | 0.2231 |
CIRS TOT. | 32 | 29–35 | 30 | 27–33 | <0.0001 |
CIRS ISC | 2.29 | 2–2.46 | 2.14 | 1.93–2.36 | <0.0001 |
CIRS ICC | 7 | 5–8 | 6 | 5–8 | <0.0001 |
Variable * | Coefficient | Std. Error | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Age | 0.028 | 0.01 | 1.03 | 1.01–1.05 | 0.0072 |
CIRS TOT | 0.078 | 0.016 | 1.08 | 1.05–1.11 | <0.0001 |
Gender | −0.553 | 0.162 | 0.57 | 0.42–0.79 | 0.0007 |
Variable * | Coefficient | Std. Error | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Age | 0.042 | 0.01 | 1.04 | 1.02–1.06 | 0.0001 |
POMA | 0.029 | 0.012 | 1.03 | 1.005–1.054 | 0.0172 |
MNA | −0.055 | 0.018 | 0.95 | 0 91–0.98 | 0.0036 |
CIRS TOT | 0.154 | 0.037 | 1.17 | 1.08–1.25 | <0.0001 |
CIRS ICC | −0.185 | 0.074 | 0.83 | 0.72–0.96 | 0.0128 |
Gender | −0.726 | 0.152 | 0.48 | 0.36–0.65 | <0.0001 |
Quartile | Median | Average Rank | Different From |
---|---|---|---|
1 (65–75 years) | 13 | 958.83 | 2, 3, and 4 |
2 (76–80 years) | 12.7 | 869.56 | 1, 3, and 4 |
3 (81–85 years) | 12.4 | 796.63 | 1 and 2 |
4 (>85 years) | 12.4 | 750.59 | 1 and 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salis, F.; Locci, G.; Mura, B.; Mandas, A. Anemia in Elderly Patients—The Impact of Hemoglobin Cut-Off Levels on Geriatric Domains. Diagnostics 2023, 13, 191. https://doi.org/10.3390/diagnostics13020191
Salis F, Locci G, Mura B, Mandas A. Anemia in Elderly Patients—The Impact of Hemoglobin Cut-Off Levels on Geriatric Domains. Diagnostics. 2023; 13(2):191. https://doi.org/10.3390/diagnostics13020191
Chicago/Turabian StyleSalis, Francesco, Giambeppe Locci, Barbara Mura, and Antonella Mandas. 2023. "Anemia in Elderly Patients—The Impact of Hemoglobin Cut-Off Levels on Geriatric Domains" Diagnostics 13, no. 2: 191. https://doi.org/10.3390/diagnostics13020191
APA StyleSalis, F., Locci, G., Mura, B., & Mandas, A. (2023). Anemia in Elderly Patients—The Impact of Hemoglobin Cut-Off Levels on Geriatric Domains. Diagnostics, 13(2), 191. https://doi.org/10.3390/diagnostics13020191