Robot-Guided Ultrasonography in Surgical Interventions
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitiello, V.; Lee, S.-L.; Cundy, T.P.; Yang, G.-Z. Emerging Robotic Platforms for Minimally Invasive Surgery. IEEE Rev. Biomed. Eng. 2012, 6, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Elgezua, Y.; Kobayashi, M.G. Fujie. Survey on current state-of-the-art in needle insertion robots: Open challenges for application in real surgery. Procedia CIRP 2013, 5, 94–99. [Google Scholar] [CrossRef]
- Ukimura, M.M.; Desai, S.; Palmer, S.; Valencerina, M.; Gross, A.L.; Abreu, M.; Aron, I.S. Gill3-dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J. Urol. 2015, 36, 118–125. [Google Scholar]
- Azizian, M.; Khoshnam, M.; Najmaei, N.; Patel, R.V. Visual servoing in medical robotics: A survey. Part I: Endoscopic and direct vision imaging—Techniques and applications. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2014, 10, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Adebar, T.K.; Fletcher, A.E.; Okamura, A.M. 3-D ultrasound-guided robotic needle steering in biological tissue. IEEE Trans. Biomed. Eng. 2014, 61, 2899–2910. [Google Scholar] [CrossRef]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 1. Cancer 2010, 117, 1097–1102. [Google Scholar] [CrossRef]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 3. Cancer 2011, 118, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 4. Cancer 2012, 118, 4914–4928. [Google Scholar] [CrossRef]
- Abbas, A.E. Surgical Management of Lung Cancer: History, Evolution, and Modern Advances. Curr. Oncol. Rep. 2018, 20, 98. [Google Scholar] [CrossRef]
- Ekmektzoglou, K.A.; Xanthos, T.; German, V.; Zografos, G.C. Breast cancer: From the earliest times through to the end of the 20th century. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 145, 3–8. [Google Scholar] [CrossRef]
- Bremers, A.; Rutgers, E.; van de Velde, C. Cancer surgery: The last 25 years. Cancer Treat. Rev. 1999, 25, 333–353. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Friedlander, D.F.; Patel, S.; Hu, J.C. The current status of robotic oncologic surgery. CA A Cancer J. Clin. 2012, 63, 45–56. [Google Scholar] [CrossRef]
- Safiejko, K.; Tarkowski, R.; Koselak, M.; Juchimiuk, M.; Tarasik, A.; Pruc, M.; Smereka, J.; Szarpak, L. Robotic-Assisted vs. Standard Laparoscopic Surgery for Rectal Cancer Resection: A Systematic Review and Meta-Analysis of 19,731 Patients. Cancers 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.; Shetty, R. Robotic Surgery in Oncology. Indian J. Surg. Oncol. 2020, 11, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.L.; Ituarte, P.H.G.; Melstrom, K.A.; Warner, S.G.; Melstrom, L.G.; Lai, L.L.; Fong, Y.; Woo, Y. Robotic surgery trends in general surgical oncology from the National Inpatient Sample. Surg. Endosc. 2018, 33, 2591–2601. [Google Scholar] [CrossRef] [PubMed]
- Nick, A.M.; Ramirez, P.T. The impact of robotic surgery on gynecologic oncology. J. Gynecol. Oncol. 2011, 22, 196–202. [Google Scholar] [CrossRef]
- Hung, A.J.; Abreu, A.L.D.C.; Shoji, S.; Goh, A.C.; Berger, A.K.; Desai, M.M.; Aron, M.; Gill, I.S.; Ukimura, O. Robotic Transrectal Ultrasonography During Robot-Assisted Radical Prostatectomy. Eur. Urol. 2012, 62, 341–348. [Google Scholar] [CrossRef]
- Pesi, B.; Moraldi, L.; Guerra, F.; Tofani, F.; Nerini, A.; Annecchiarico, M.; Coratti, A. Surgical and oncological outcomes after ultrasound-guided robotic liver resections for malignant tumor. Analysis of a prospective database. Int. J. Med. Robot. 2019, 15, e2002. [Google Scholar]
- Calin, M.L.; Sadiq, A.; Arevalo, G.; Fuentes, R.; Flanders, V.L.; Gupta, N.; Nasri, B.; Singh, K. The First Case Report of Robotic Multivisceral Resection for Synchronous Liver Metastasis from Pancreatic Neuroendocrine Tumor: A Case Report and Literature Review. J. Laparoendosc. Adv. Surg. Tech. 2016, 26, 816–824. [Google Scholar] [CrossRef]
- Hill, J.S.; McPhee, J.T.; McDade, T.P.; Zhou, Z.; Sullivan, M.E.; Whalen, G.F.; Tseng, J.F. Pancreatic neuroendocrine tumors. Cancer 2009, 115, 741–751. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Buchs, N.C.; Coratti, A.; Sbrana, F.; Lombardi, A.; Felicioni, L.; Bianco, F.M.; Addeo, P. Robot-Assisted Treatment of Splenic Artery Aneurysms. Ann. Vasc. Surg. 2011, 25, 377–383. [Google Scholar] [CrossRef]
- Schneider, C.M.; Peng, P.D.; Taylor, R.H.; Dachs, G.W.; Hasser, C.J.; DiMaio, S.P.; Choti, M.A. Robot-assisted laparoscopic ultrasonography for hepatic surgery. Surgery 2012, 151, 756–762. [Google Scholar] [CrossRef]
- Billings, S.; Deshmukh, N.; Kang, H.J.; Taylor, R.; Boctor, E.M. System for robot-assisted real-time laparoscopic ultrasound elastography. In Proceedings of the Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, San Diego, CA, USA, 8–9 February 2012; p. 83161W. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, W.; Wang, H.; Luo, Y.; Wang, X.; Lv, S.; Dong, J. Robotic spleen-preserving laparoscopic distal pancreatectomy: A single-centered Chinese experience. World J. Surg. Oncol. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Araujo, R.L.C.; de Castro, L.A.; Fellipe, F.E.C.; Burgardt, D.; Wohnrath, D.R. Robotic left lateral sectionectomy as stepwise approach for cirrhotic liver. J. Robot. Surg. 2017, 12, 549–552. [Google Scholar] [CrossRef]
- Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; Meyers, W.C. Robotic surgery. Ann. Surg. 2004, 239, 14–21. [Google Scholar] [CrossRef]
- Leven, J.; Burschka, D.; Kumar, R.; Zhang, G.; Blumenkranz, S.; Dai, X.; Awad, M.; Hager, G.D.; Marohn, M.; Choti, M.; et al. DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability. Med. Image Comput. Comput. Assist. Interv. 2005, 8, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, N.P.; Kang, H.J.; Billings, S.D.; Taylor, R.H.; Hager, G.D.; Boctor, E.M. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System. PLoS ONE 2014, 9, e115881. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.R.; Gray, R.; Mayer, E.; Motiwala, H.; Laniado, M.; Karim, O. Occlusion Angiography Using Intraoperative Contrast-enhanced Ultrasound Scan (CEUS): A Novel Technique Demonstrating Segmental Renal Blood Supply to Assist Zero-ischaemia Robot-assisted Partial Nephrectomy. Eur. Urol. 2013, 63, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Hungr, N.; Troccaz, J.; Zemiti, N.; Tripodi, N. Design of an ultrasound-guided robotic brachytherapy needle-insertion system. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 3–6 September 2009; pp. 250–253. [Google Scholar]
- Mallapragada, V.; Sarkar, N.; Podder, T.K. A Robotic System for Real-time Tumor Manipulation During Image guided Breast Biopsy. In Proceedings of the 2007 IEEE 7th International Symposium on Bioinformatics and Bioengineering, Boston, MA, USA, 14–17 October 2007; pp. 204–210. [Google Scholar] [CrossRef]
- Long, J.-A.; Hungr, N.; Baumann, M.; Descotes, J.-L.; Bolla, M.; Giraud, J.-Y.; Rambeaud, J.-J.; Troccaz, J. Development of a Novel Robot for Transperineal Needle Based Interventions: Focal Therapy, Brachytherapy and Prostate Biopsies. J. Urol. 2012, 188, 1369–1374. [Google Scholar] [CrossRef]
- Venkatesh, S.S.; Levenback, B.J.; Sultan, L.R.; Bouzghar, G.; Sehgal, C.M. Going beyond a First Reader: A Machine Learning Methodology for Optimizing Cost and Performance in Breast Ultrasound Diagnosis. Ultrasound Med. Biol. 2015, 41, 3148–3162. [Google Scholar] [CrossRef]
- Picard, F.; Deep, K.; Jenny, J.Y. Current state of the art in total knee arthroplasty computer navigation. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3565–3574. [Google Scholar] [CrossRef]
- Reigstad, O.; Grimsgaard, C. Complications in knee arthroscopy. Knee Surg. Sport Traumatol. Arthrosc. 2006, 14, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Uhečírk, M.; Kybic, J.; Liebgott, H.; Cachard, C. Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images. IEEE Trans. Biomed. Eng. 2010, 57, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Hallet, J.; Soler, L.; Diana, M.; Mutter, D.; Baumert, T.F.; Habersetzer, F.; Marescaux, J.; Pessaux, P. Trans-Thoracic Minimally Invasive Liver Resection Guided by Augmented Reality. J. Am. Coll. Surg. 2015, 220, e55–e60. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Azizian, M.; Wilson, E.; Wu, K.; Martin, A.D.; Kane, T.D.; Peters, C.A.; Cleary, K.; Shekhar, R. Stereoscopic augmented reality for laparoscopic surgery. Surg. Endosc. 2014, 28, 2227–2235. [Google Scholar] [CrossRef]
Author | Cases (Number) | Purpose | Probe Localisation | Probe Type |
---|---|---|---|---|
Patriti [19] | 7 | Inspection | Robotic arm | 2D US |
Giulianotti [21] | 9 | Blood flow | Robotic arm | Not specific |
Schneider [22] | Phantom liver | Vessel localisation | Robotic arm | 2D US |
Billings [23] | Phantom tissues | Tissue hardness | Robotic arm | 2D US |
Liu [24] | 7 | Tumour margins of the pancreas | Robotic arm | 2D US |
Calin [20] | 1 | Liver and pancreas vessels | Robotic arm | Not specified |
Araujo [25] | Not specified | Liver lesions | Not specified | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciocan, R.A.; Graur, F.; Ciocan, A.; Cismaru, C.A.; Pintilie, S.R.; Berindan-Neagoe, I.; Hajjar, N.A.; Gherman, C.D. Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics 2023, 13, 2456. https://doi.org/10.3390/diagnostics13142456
Ciocan RA, Graur F, Ciocan A, Cismaru CA, Pintilie SR, Berindan-Neagoe I, Hajjar NA, Gherman CD. Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics. 2023; 13(14):2456. https://doi.org/10.3390/diagnostics13142456
Chicago/Turabian StyleCiocan, Răzvan Alexandru, Florin Graur, Andra Ciocan, Cosmin Andrei Cismaru, Sebastian Romeo Pintilie, Ioana Berindan-Neagoe, Nadim Al Hajjar, and Claudia Diana Gherman. 2023. "Robot-Guided Ultrasonography in Surgical Interventions" Diagnostics 13, no. 14: 2456. https://doi.org/10.3390/diagnostics13142456
APA StyleCiocan, R. A., Graur, F., Ciocan, A., Cismaru, C. A., Pintilie, S. R., Berindan-Neagoe, I., Hajjar, N. A., & Gherman, C. D. (2023). Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics, 13(14), 2456. https://doi.org/10.3390/diagnostics13142456