Robot-Guided Ultrasonography in Surgical Interventions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitiello, V.; Lee, S.-L.; Cundy, T.P.; Yang, G.-Z. Emerging Robotic Platforms for Minimally Invasive Surgery. IEEE Rev. Biomed. Eng. 2012, 6, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Elgezua, Y.; Kobayashi, M.G. Fujie. Survey on current state-of-the-art in needle insertion robots: Open challenges for application in real surgery. Procedia CIRP 2013, 5, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Ukimura, M.M.; Desai, S.; Palmer, S.; Valencerina, M.; Gross, A.L.; Abreu, M.; Aron, I.S. Gill3-dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J. Urol. 2015, 36, 118–125. [Google Scholar]
- Azizian, M.; Khoshnam, M.; Najmaei, N.; Patel, R.V. Visual servoing in medical robotics: A survey. Part I: Endoscopic and direct vision imaging—Techniques and applications. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2014, 10, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Adebar, T.K.; Fletcher, A.E.; Okamura, A.M. 3-D ultrasound-guided robotic needle steering in biological tissue. IEEE Trans. Biomed. Eng. 2014, 61, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 1. Cancer 2010, 117, 1097–1102. [Google Scholar] [CrossRef]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 3. Cancer 2011, 118, 1155–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 4. Cancer 2012, 118, 4914–4928. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.E. Surgical Management of Lung Cancer: History, Evolution, and Modern Advances. Curr. Oncol. Rep. 2018, 20, 98. [Google Scholar] [CrossRef]
- Ekmektzoglou, K.A.; Xanthos, T.; German, V.; Zografos, G.C. Breast cancer: From the earliest times through to the end of the 20th century. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 145, 3–8. [Google Scholar] [CrossRef]
- Bremers, A.; Rutgers, E.; van de Velde, C. Cancer surgery: The last 25 years. Cancer Treat. Rev. 1999, 25, 333–353. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Friedlander, D.F.; Patel, S.; Hu, J.C. The current status of robotic oncologic surgery. CA A Cancer J. Clin. 2012, 63, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Safiejko, K.; Tarkowski, R.; Koselak, M.; Juchimiuk, M.; Tarasik, A.; Pruc, M.; Smereka, J.; Szarpak, L. Robotic-Assisted vs. Standard Laparoscopic Surgery for Rectal Cancer Resection: A Systematic Review and Meta-Analysis of 19,731 Patients. Cancers 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.; Shetty, R. Robotic Surgery in Oncology. Indian J. Surg. Oncol. 2020, 11, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.L.; Ituarte, P.H.G.; Melstrom, K.A.; Warner, S.G.; Melstrom, L.G.; Lai, L.L.; Fong, Y.; Woo, Y. Robotic surgery trends in general surgical oncology from the National Inpatient Sample. Surg. Endosc. 2018, 33, 2591–2601. [Google Scholar] [CrossRef] [PubMed]
- Nick, A.M.; Ramirez, P.T. The impact of robotic surgery on gynecologic oncology. J. Gynecol. Oncol. 2011, 22, 196–202. [Google Scholar] [CrossRef]
- Hung, A.J.; Abreu, A.L.D.C.; Shoji, S.; Goh, A.C.; Berger, A.K.; Desai, M.M.; Aron, M.; Gill, I.S.; Ukimura, O. Robotic Transrectal Ultrasonography During Robot-Assisted Radical Prostatectomy. Eur. Urol. 2012, 62, 341–348. [Google Scholar] [CrossRef]
- Pesi, B.; Moraldi, L.; Guerra, F.; Tofani, F.; Nerini, A.; Annecchiarico, M.; Coratti, A. Surgical and oncological outcomes after ultrasound-guided robotic liver resections for malignant tumor. Analysis of a prospective database. Int. J. Med. Robot. 2019, 15, e2002. [Google Scholar]
- Calin, M.L.; Sadiq, A.; Arevalo, G.; Fuentes, R.; Flanders, V.L.; Gupta, N.; Nasri, B.; Singh, K. The First Case Report of Robotic Multivisceral Resection for Synchronous Liver Metastasis from Pancreatic Neuroendocrine Tumor: A Case Report and Literature Review. J. Laparoendosc. Adv. Surg. Tech. 2016, 26, 816–824. [Google Scholar] [CrossRef]
- Hill, J.S.; McPhee, J.T.; McDade, T.P.; Zhou, Z.; Sullivan, M.E.; Whalen, G.F.; Tseng, J.F. Pancreatic neuroendocrine tumors. Cancer 2009, 115, 741–751. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Buchs, N.C.; Coratti, A.; Sbrana, F.; Lombardi, A.; Felicioni, L.; Bianco, F.M.; Addeo, P. Robot-Assisted Treatment of Splenic Artery Aneurysms. Ann. Vasc. Surg. 2011, 25, 377–383. [Google Scholar] [CrossRef]
- Schneider, C.M.; Peng, P.D.; Taylor, R.H.; Dachs, G.W.; Hasser, C.J.; DiMaio, S.P.; Choti, M.A. Robot-assisted laparoscopic ultrasonography for hepatic surgery. Surgery 2012, 151, 756–762. [Google Scholar] [CrossRef]
- Billings, S.; Deshmukh, N.; Kang, H.J.; Taylor, R.; Boctor, E.M. System for robot-assisted real-time laparoscopic ultrasound elastography. In Proceedings of the Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, San Diego, CA, USA, 8–9 February 2012; p. 83161W. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, W.; Wang, H.; Luo, Y.; Wang, X.; Lv, S.; Dong, J. Robotic spleen-preserving laparoscopic distal pancreatectomy: A single-centered Chinese experience. World J. Surg. Oncol. 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Araujo, R.L.C.; de Castro, L.A.; Fellipe, F.E.C.; Burgardt, D.; Wohnrath, D.R. Robotic left lateral sectionectomy as stepwise approach for cirrhotic liver. J. Robot. Surg. 2017, 12, 549–552. [Google Scholar] [CrossRef]
- Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; Meyers, W.C. Robotic surgery. Ann. Surg. 2004, 239, 14–21. [Google Scholar] [CrossRef]
- Leven, J.; Burschka, D.; Kumar, R.; Zhang, G.; Blumenkranz, S.; Dai, X.; Awad, M.; Hager, G.D.; Marohn, M.; Choti, M.; et al. DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability. Med. Image Comput. Comput. Assist. Interv. 2005, 8, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, N.P.; Kang, H.J.; Billings, S.D.; Taylor, R.H.; Hager, G.D.; Boctor, E.M. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System. PLoS ONE 2014, 9, e115881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.R.; Gray, R.; Mayer, E.; Motiwala, H.; Laniado, M.; Karim, O. Occlusion Angiography Using Intraoperative Contrast-enhanced Ultrasound Scan (CEUS): A Novel Technique Demonstrating Segmental Renal Blood Supply to Assist Zero-ischaemia Robot-assisted Partial Nephrectomy. Eur. Urol. 2013, 63, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Hungr, N.; Troccaz, J.; Zemiti, N.; Tripodi, N. Design of an ultrasound-guided robotic brachytherapy needle-insertion system. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 3–6 September 2009; pp. 250–253. [Google Scholar]
- Mallapragada, V.; Sarkar, N.; Podder, T.K. A Robotic System for Real-time Tumor Manipulation During Image guided Breast Biopsy. In Proceedings of the 2007 IEEE 7th International Symposium on Bioinformatics and Bioengineering, Boston, MA, USA, 14–17 October 2007; pp. 204–210. [Google Scholar] [CrossRef]
- Long, J.-A.; Hungr, N.; Baumann, M.; Descotes, J.-L.; Bolla, M.; Giraud, J.-Y.; Rambeaud, J.-J.; Troccaz, J. Development of a Novel Robot for Transperineal Needle Based Interventions: Focal Therapy, Brachytherapy and Prostate Biopsies. J. Urol. 2012, 188, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, S.S.; Levenback, B.J.; Sultan, L.R.; Bouzghar, G.; Sehgal, C.M. Going beyond a First Reader: A Machine Learning Methodology for Optimizing Cost and Performance in Breast Ultrasound Diagnosis. Ultrasound Med. Biol. 2015, 41, 3148–3162. [Google Scholar] [CrossRef]
- Picard, F.; Deep, K.; Jenny, J.Y. Current state of the art in total knee arthroplasty computer navigation. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3565–3574. [Google Scholar] [CrossRef]
- Reigstad, O.; Grimsgaard, C. Complications in knee arthroscopy. Knee Surg. Sport Traumatol. Arthrosc. 2006, 14, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Uhečírk, M.; Kybic, J.; Liebgott, H.; Cachard, C. Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images. IEEE Trans. Biomed. Eng. 2010, 57, 1907–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallet, J.; Soler, L.; Diana, M.; Mutter, D.; Baumert, T.F.; Habersetzer, F.; Marescaux, J.; Pessaux, P. Trans-Thoracic Minimally Invasive Liver Resection Guided by Augmented Reality. J. Am. Coll. Surg. 2015, 220, e55–e60. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Azizian, M.; Wilson, E.; Wu, K.; Martin, A.D.; Kane, T.D.; Peters, C.A.; Cleary, K.; Shekhar, R. Stereoscopic augmented reality for laparoscopic surgery. Surg. Endosc. 2014, 28, 2227–2235. [Google Scholar] [CrossRef]
Author | Cases (Number) | Purpose | Probe Localisation | Probe Type |
---|---|---|---|---|
Patriti [19] | 7 | Inspection | Robotic arm | 2D US |
Giulianotti [21] | 9 | Blood flow | Robotic arm | Not specific |
Schneider [22] | Phantom liver | Vessel localisation | Robotic arm | 2D US |
Billings [23] | Phantom tissues | Tissue hardness | Robotic arm | 2D US |
Liu [24] | 7 | Tumour margins of the pancreas | Robotic arm | 2D US |
Calin [20] | 1 | Liver and pancreas vessels | Robotic arm | Not specified |
Araujo [25] | Not specified | Liver lesions | Not specified | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciocan, R.A.; Graur, F.; Ciocan, A.; Cismaru, C.A.; Pintilie, S.R.; Berindan-Neagoe, I.; Hajjar, N.A.; Gherman, C.D. Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics 2023, 13, 2456. https://doi.org/10.3390/diagnostics13142456
Ciocan RA, Graur F, Ciocan A, Cismaru CA, Pintilie SR, Berindan-Neagoe I, Hajjar NA, Gherman CD. Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics. 2023; 13(14):2456. https://doi.org/10.3390/diagnostics13142456
Chicago/Turabian StyleCiocan, Răzvan Alexandru, Florin Graur, Andra Ciocan, Cosmin Andrei Cismaru, Sebastian Romeo Pintilie, Ioana Berindan-Neagoe, Nadim Al Hajjar, and Claudia Diana Gherman. 2023. "Robot-Guided Ultrasonography in Surgical Interventions" Diagnostics 13, no. 14: 2456. https://doi.org/10.3390/diagnostics13142456
APA StyleCiocan, R. A., Graur, F., Ciocan, A., Cismaru, C. A., Pintilie, S. R., Berindan-Neagoe, I., Hajjar, N. A., & Gherman, C. D. (2023). Robot-Guided Ultrasonography in Surgical Interventions. Diagnostics, 13(14), 2456. https://doi.org/10.3390/diagnostics13142456