Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Relationship between PLNF, Lymphocytic Infiltrate, and TgAb
3.2. Relationship between PLNF, Lymphocytic Infiltrate, and the Presence of TgAb in TPOAb+ and TPOAb− Patients
3.3. HBME1 Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, A.; Doniach, I. Morphology of the nuclei of papillary carcinoma of the thyroid. Br. J. Cancer 1969, 23, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, H.; Murayama, H.; Ohtani, N.; Takaya, K.; Mori, Y.; Sakai, N.; Kakudo, K. Optically clear nuclei in papillary carcinoma of the thyroid: Demonstration of one of the fixation artifacts and its practical usefulness. Pathol. Int. 2000, 50, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.L.; Huang, Y.; Pellegata, N.S.; De La Chapelle, A.; Kloos, R.T. Hashimoto’s thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 2004, 45, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yan, J.; Zhang, C.; Qin, S.; Qin, L.; Liu, L.; Wang, X.; Li, N. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. Int. J. Clin. Exp. Pathol. 2014, 7, 7999–8007. [Google Scholar]
- Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016, 2, 1023–1029. [Google Scholar] [CrossRef]
- Nagayama, Y. Thyroid Autoimmunity and Thyroid Cancer—The Pathogenic Connection: A 2018 Update. Horm. Metab. Res. 2018, 50, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Pang, P.; Wang, L.; Zhao, L.; Jiang, L.; Song, Y.; Fan, X.; Wang, Y.; Zhao, S.; Ba, J.; et al. Clinical Analysis of Preoperative Anti-thyroglobulin Antibody in Papillary Thyroid Cancer between 2011 and 2015 in Beijing, China: A Retrospective Study. Front. Endocrinol. 2020, 11, 452. [Google Scholar] [CrossRef]
- Tsushima, Y.; Miyauchi, A.; Ito, Y.; Kudo, T.; Masuoka, H.; Yabuta, T.; Fukushima, M.; Kihara, M.; Higashiyama, T.; Takamura, Y.; et al. Prognostic significance of changes in serum thyroglobulin antibody levels of pre- and post-total thyroidectomy in thyroglobulin antibody-positive papillary thyroid carcinoma patients. Endocr. J. 2013, 60, 871–876. [Google Scholar] [CrossRef]
- Durante, C.; Tognini, S.; Montesano, T.; Orlandi, F.; Torlontano, M.; Puxeddu, E.; Attard, M.; Costante, G.; Tumino, S.; Meringolo, D.; et al. PTC Study Group, Clinical aggressiveness and long-term outcome in patients with papillary thyroid cancer and circulating anti-thyroglobulin autoantibodies. Thyroid. 2014, 24, 1139–1145. [Google Scholar] [CrossRef]
- Izembart, M. Anticorps antithyroglobuline. In EMC—Biologie Clinique; Elsevier Masson SAS: Paris, France, 2003. [Google Scholar]
- Hasukic, B.; Cickusic, A.; Sehanovic, E.; Osmic, H. Fine Needle Aspiration Cytology and Thyroglobulin Antibodies in Preoperative Diagnosis of Thyroid Malignancy. Med. Arch. 2019, 73, 382–385. [Google Scholar] [CrossRef]
- Doggui, R. Immuno-analytical profile of thyroglobulin antibodies. Ann. Biol. Clin. 2018, 76, 695–704. [Google Scholar] [CrossRef]
- Carayanniotis, G. Molecular parameters linking thyroglobulin iodination with auto-immune thyroiditis. Hormones 2011, 10, 27–35. [Google Scholar] [CrossRef]
- Luo, Y.; Kawashima, A.; Ishido, Y.; Yoshihara, A.; Oda, K.; Hiroi, N.; Ito, T.; Ishii, N.; Suzuki, K. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int. J. Mol. Sci. 2014, 15, 12895–12912. [Google Scholar] [CrossRef]
- Krzeslak, A.; Józwiak, P.; Lipinska, A. Glycosylation and glycoproteins in thyroid cancer: A potential role for diagnostics, updates in the understanding and management of thyroid cancer. In Updates in the Understanding and Management of Thyroid Cancer; Fahey, T.J., Ed.; InTech: London, UK, 2012; Chapter 3; pp. 53–90. ISBN 978-953-51-0299-1. [Google Scholar]
- Miyoshi, E.; Ito, Y.; Miyoshi, Y. Involvement of aberrant glycosylation in thyroid cancer. J. Oncol. 2010, 2010, 816595. [Google Scholar] [CrossRef]
- Feldt-Rasmussen, U. Serum thyroglobulin and thyroglobulin autoantibodies in thyroid diseases. Pathog. Diagn. Asp. Allergy 1983, 38, 369–387. [Google Scholar] [CrossRef]
- Sinadinovic, J.; Cvejic, D.; Savin, S.; Jancic-Zuguricas, M.; Micic, J.V. Altered terminal glycosylation of thyroglobulin in papillary thyroid carcinoma. Exp. Clin. Endocrinol. 1992, 100, 124–128. [Google Scholar] [CrossRef]
- Zabczynska, M.; Kamila Kozłowska, K.; Pochec, E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int. J. Mol. Sci. 2018, 19, 2792. [Google Scholar] [CrossRef]
- Eisenberg, B.L. Thyroid Cancer with Coexistent Hashimoto’s Thyroiditis. Arch. Surg. 1989, 124, 1045–1047. [Google Scholar] [CrossRef]
- Kashima, K.; Yokoyama, S.; Noguchi, S.; Murakami, N.; Yamashita, H.; Watanabe, S.; Uchino, S.; Toda, M.; Sasaki, A.; Daa, T.; et al. Chronic Thyroiditis as a Favorable Prognostic Factor in Papillary Thyroid Carcinoma. Thyroid. 1998, 8, 197–202. [Google Scholar] [CrossRef]
- Kebebew, E.; Treseler, P.A.; Ituarte, P.H.; Clark, O.H. Coexisting Chronic Lymphocytic Thyroiditis and Papillary Thyroid Cancer Revisited. World J. Surg. 2001, 25, 632–637. [Google Scholar] [CrossRef]
- Liu, H.; Lin, F. Application of immunohistochemistry in thyroid pathology. Arch. Pathol. Lab. Med. 2015, 139, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, T.; Hyjek, E.; Kao, J.; Chen, Y.-T. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am. J. Clin. Pathol. 2006, 126, 700–708. [Google Scholar] [CrossRef]
- Cheung, C.C.; Ezzat, S.; Freeman, J.L.; Rosen, I.B.; Asa, S.L. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod. Pathol. 2001, 14, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, G.; Seminati, D.; Smith, A.; Piga, I.; Capitoli, G.; Garancini, M.; L’Imperio, V.; Fusco, N.; Pagni, F. Lights on HBME-1: The elusive biomarker in thyroid cancer pathology. J. Clin. Pathol. 2022, 75, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Osamura, R.Y.; Kloppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2017; pp. 65–143.
- Wong, S.L.; Grodski, S.; Yeung, M.J.; Serpell, J.W. Anti-thyroid antibodies as a predictor of thyroid cancer. ANZ J. Surg. 2015, 85, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.J.O.; Eslick, G.D.; Edirimanne, S. Investigating Antithyroglobulin Antibody as a Prognostic Marker for Differentiated Thyroid Cancer: A Meta-Analysis and Systematic Review. Meta-Analysis Thyroid. 2020, 30, 1601–1612. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Lai, S.; Wang, P.; Li, J.; Wang, L.; Guan, H.; Kuang, J. The utility of serum anti-thyroglobulin antibody and thyroglobulin in the preoperative differential diagnosis of thyroid follicular neoplasms. Endocrine 2022, 76, 369–376. [Google Scholar] [CrossRef]
- Adhami, M.; Michail, P.; Rao, A.; Bhatt, C.R.; Grodski, S.; Serpell, J.W.; Lee, J.C. Anti-Thyroid Antibodies and TSH as Potential Markers of Thyroid Carcinoma and Aggressive Behavior in Patients with Indeterminate Fine-Needle Aspiration Cytology. World J. Surg. 2020, 44, 363–370. [Google Scholar] [CrossRef]
- Spencer, C.A.; Bergoglio, L.M.; Kazarosyan, M.; Fatemi, S.; LoPresti, J.S. Clinical impact of thyroglobulin (Tg) and Tg autoantibody method differences on the management of patients with differentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 2005, 90, 5566–5575. [Google Scholar] [CrossRef]
- Spencer, C.A.; Takeuchi, M.; Kazarosyan, M.; Wang, C.C.; Guttler, R.B.; Singer, P.A.; Fatemi, S.; LoPresti, J.S.; Nicoloff, J.T. Serum thyroglobulin autoantibodies: Prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 1998, 83, 1121–1127. [Google Scholar] [CrossRef]
- Miettinen, M.; Kärkkäinen, P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch. 1996, 429, 213–219. [Google Scholar]
- Rossi, E.D.; Raffaelli, M.; Mule’, A.; Miraglia, A.; Lombardi, C.P.; Vecchio, F.M.; Fadda, G. Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology 2006, 48, 795–800. [Google Scholar] [CrossRef]
- Fischer, S.; Asa, S.L. Application of immunohistochemistry to thyroid carcinoma. Arch. Pathol. Arch. Pathol. Lab. Med. 2008, 132, 359–372. [Google Scholar] [CrossRef]
- de Matos, L.L.; Del Giglio, A.B.; Matsubayashi, C.O.; de Lima Farah, M.; Del Giglio, A.; da Silva Pinhal, M.A. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: Systematic review and diagnostic meta-analysis. Diagn. Pathol. 2012, 7, 97. [Google Scholar] [CrossRef]
- Nasr, M.R.; Mukhopadhyay, S.; Zhang, S.; Katzenstein, A.-L.A. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: Utility of HBME1 combined with CK19 immunostaining. Mod. Pathol. 2006, 19, 1631–1637. [Google Scholar] [CrossRef]
- Okosieme, O.E.; Parkes, A.B.; Premawardhana, L.D.K.E.; Evans, C.; Lazarus, J.H. Thyroglobulin: Current aspects of its role in autoimmune thyroid disease and thyroid cancer. Minerva Med. 2003, 94, 319–330. [Google Scholar]
- Hishinuma, A.; Fukata, S.; Kakudo, K.; Murata, Y.; Ieiri, T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid 2005, 15, 1079–1084. [Google Scholar] [CrossRef]
- Siraj, A.K.; Masoodi, T.; Bu, R.; Beg, S.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Dawish, M.; Alkuraya, F.S.; Al-Kuraya, K.S. Genomic Profiling of Thyroid Cancer Reveals a Role for Thyroglobulin in Metastasis. Am. J. Hum. Genet. 2017, 100, 562–563. [Google Scholar] [CrossRef]
- Kolanowska, M.; Wójcicka, A.; Kubiak, A.; Świerniak, M.; Kotlarek, M.; Maciąg, M.; Gaj, P.; Koperski, Ł.; Górnicka, B.; Jażdżewski, K. Functional analysis of a novel, thyroglobulin-embedded microRNA gene deregulated in papillary thyroid carcinoma. Sci. Rep. 2017, 30, 9942. [Google Scholar] [CrossRef]
- Xavier, A.C.; Maciel, R.M.; Vieira, J.G.; Dias-da-Silva, M.R.; Martins, J.R. Insights into the posttranslational structural heterogeneity of thyroglobulin and its role in the development, diagnosis, and management of benign and malignant thyroid diseases. Arch. Endocrinol. Metab. 2016, 60, 66–75. [Google Scholar] [CrossRef]
- Czarnocka, B. Thyroperoxidase, thyroglobulin, Na(+)/I(−) symporter, pendrin in thyroid autoimmunity. Front. Biosci. 2011, 16, 783–802. [Google Scholar] [CrossRef] [PubMed]
- Babál, P.; Janega, P.; Cerná, A.; Kholová, I.; Brabencová, E. Neoplastic transformation of the thyroid gland is accompanied by changes in cellular sialylation. Acta Histochem. 2006, 108, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Janega, P.; Cerná, A.; Kholová, I.; Brabencová, E.; Babál, P. Sialic acid expression in autoimmune thyroiditis. Acta Histochem. 2002, 104, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.J.; Yoon, J.H. Chronic lymphocytic thyroiditis protects against recurrence in patients with cN0 papillary thyroid cancer. Surg. Oncol. 2020, 34, 67–73. [Google Scholar] [CrossRef]
- Souza, S.L.; Montalli Da Assumpcao, L.V.; Ward, L.S. Impact of previous thyroid autoimmune diseases on prognosis of patients with well-differentiated thyroid cancer. Thyroid 2003, 13, 491–495. [Google Scholar] [CrossRef]
- Caturegli, P.; Kuppers, R.C.; Mariotti, S.; Burek, C.L.; Pinchera, A.; Ladenson, P.W.; Rose, N.R. IgG subclass distribution of thyroglobulin antibodies in patients with thyroid disease. Clin. Exp. Immunol. 1994, 98, 464–469. [Google Scholar] [CrossRef]
- Weetman, A.P. IgA class and subclass thyroid auto-antibodies in Graves’ disease and Hashimoto’s thyroiditis. Int. Arch. Allergy Appl. Immunol. 1987, 83, 432–435. [Google Scholar] [CrossRef]
NIFTP | Follicular Adenoma | Multi- Nodular Goiter | Graves Disease | Chronic Lymphocytic Thyroiditis | |
---|---|---|---|---|---|
TgAb+/TPOAb- (7) | 0 | 1 | 4 | 1 | 1 |
TgAb+/TPOAb+ (19) | 2 | 2 | 6 | 1 | 8 |
TgAb−/TPOAb- (38) | 0 | 7 | 30 | 0 | 1 |
TgAb−/TPOAb+ (6) | 0 | 0 | 4 | 0 | 2 |
Total (70) | 2 | 10 | 44 | 2 | 12 |
Cases | PLNF Present | PLNF Absent | LI Present | LI Absent | PLNF/LI Present | PLNF/LI Absent | |
---|---|---|---|---|---|---|---|
TgAb+ | 26 | 23 | 3 | 23 | 3 | 21 | 1 |
TgAb− | 44 | 16 | 28 | 14 | 30 | 13 | 27 |
Tot. 70 | p = 0.0001 OR: 13.42 | p < 0.0001 OR: 15.71 | p < 0.0001 OR: 43.62 |
PLNF Present | PLNF Absent | LI Present | LI Absent | |
---|---|---|---|---|
TgAb+/TPOAb+ (19) | 18 | 1 | 17 | 2 |
TgAb+/TPOAb− (7) | 6 | 1 | 5 | 2 |
Fisher’s exact test | p = 0.4738 (n.s) | p = 0.287 (n.s) | ||
TgAb−/TPOAb+ (6) | 4 | 2 | 4 | 2 |
TgAb−/TPOAb− (38) | 16 | 22 | 10 | 28 |
Yates’s Chi-square | p = 0.49 (n.s) OR: 3.5 | p = 0.1218 (n.s) OR: 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabibi, D.; Giannone, A.G.; Bellavia, S.; Lo Coco, R.; Lo Bianco, A.; Formisano, E.; Scerrino, G.; Graceffa, G. Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland. Diagnostics 2023, 13, 2042. https://doi.org/10.3390/diagnostics13122042
Cabibi D, Giannone AG, Bellavia S, Lo Coco R, Lo Bianco A, Formisano E, Scerrino G, Graceffa G. Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland. Diagnostics. 2023; 13(12):2042. https://doi.org/10.3390/diagnostics13122042
Chicago/Turabian StyleCabibi, Daniela, Antonino Giulio Giannone, Sandro Bellavia, Roberta Lo Coco, Anna Lo Bianco, Eleonora Formisano, Gregorio Scerrino, and Giuseppa Graceffa. 2023. "Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland" Diagnostics 13, no. 12: 2042. https://doi.org/10.3390/diagnostics13122042
APA StyleCabibi, D., Giannone, A. G., Bellavia, S., Lo Coco, R., Lo Bianco, A., Formisano, E., Scerrino, G., & Graceffa, G. (2023). Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland. Diagnostics, 13(12), 2042. https://doi.org/10.3390/diagnostics13122042