Machine Learning Assisting the Prediction of Clinical Outcomes following Nucleoplasty for Lumbar Degenerative Disc Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Primary Outcomes
2.3. MRI Parameters
2.4. Data Preprocessing
2.4.1. Rescale
2.4.2. Crop
2.4.3. Radiomic Features Extraction
2.4.4. Normalization
2.4.5. K-Fold (Cross-Validation)
2.5. Model Development and Validation
2.5.1. Support Vector Machine (SVM)
2.5.2. Light Gradient Boosting Machine (LGBM)
2.5.3. Extreme Gradient Boosting (XGB)
2.5.4. Extreme Gradient Boosting Random Forest (XGBRF)
2.5.5. Categorical Boosting (CatBoost)
2.5.6. Improved Random Forest (iRF)
2.6. Model Training Parameters
2.7. Model Training Equipment
2.8. Evaluation Index
3. Results
3.1. Models
3.2. Radiomic Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, F.; Jia, Z.; Zhao, Z.; Xie, L.; Gao, X.; Ma, D.; Liu, M. Total disc replacement versus fusion for lumbar degenerative disc disease: A systematic review of overlapping meta-analyses. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2017, 26, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Battie, M.C.; Joshi, A.B.; Gibbons, L.E.; Group, I.D.S.P. Degenerative Disc Disease: What is in a Name? Spine 2019, 44, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Weinstein, J.N. Low back pain. N. Engl. J. Med. 2001, 344, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Costachescu, B.; Niculescu, A.G.; Teleanu, R.I.; Iliescu, B.F.; Radulescu, M.; Grumezescu, A.M.; Dabija, M.G. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int. J. Mol. Sci. 2022, 23, 6460. [Google Scholar] [CrossRef]
- Taher, F.; Essig, D.; Lebl, D.R.; Hughes, A.P.; Sama, A.A.; Cammisa, F.P.; Girardi, F.P. Lumbar degenerative disc disease: Current and future concepts of diagnosis and management. Adv. Orthop. 2012, 2012, 970752. [Google Scholar] [CrossRef]
- Baliga, S.; Treon, K.; Craig, N.J. Low Back Pain: Current Surgical Approaches. Asian Spine J. 2015, 9, 645–657. [Google Scholar] [CrossRef]
- Zhao, L.; Manchikanti, L.; Kaye, A.D.; Abd-Elsayed, A. Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options-a Literature Review. Curr. Pain Headache Rep. 2019, 23, 86. [Google Scholar] [CrossRef]
- Estefan, M.; Estefan, V. Intradiscal Electrothermal Therapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Khor, S.; Lavallee, D.; Cizik, A.M.; Bellabarba, C.; Chapman, J.R.; Howe, C.R.; Lu, D.; Mohit, A.A.; Oskouian, R.J.; Roh, J.R.; et al. Development and Validation of a Prediction Model for Pain and Functional Outcomes After Lumbar Spine Surgery. JAMA Surg. 2018, 153, 634–642. [Google Scholar] [CrossRef]
- Lubelski, D.; Feghali, J.; Nowacki, A.S.; Alentado, V.J.; Planchard, R.; Abdullah, K.G.; Sciubba, D.M.; Steinmetz, M.P.; Benzel, E.C.; Mroz, T.E. Patient-specific prediction model for clinical and quality-of-life outcomes after lumbar spine surgery. J. Neurosurg. Spine 2021, 34, 580–588. [Google Scholar] [CrossRef]
- Harada, G.K.; Siyaji, Z.K.; Mallow, G.M.; Hornung, A.L.; Hassan, F.; Basques, B.A.; Mohammed, H.A.; Sayari, A.J.; Samartzis, D.; An, H.S. Artificial intelligence predicts disk re-herniation following lumbar microdiscectomy: Development of the “RAD” risk profile. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2021, 30, 2167–2175. [Google Scholar] [CrossRef]
- Wirries, A.; Geiger, F.; Hammad, A.; Oberkircher, L.; Blumcke, I.; Jabari, S. Artificial intelligence facilitates decision-making in the treatment of lumbar disc herniations. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2021, 30, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Oktay, A.B.; Albayrak, N.B.; Akgul, Y.S. Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2014, 38, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Liawrungrueang, W.; Kim, P.; Kotheeranurak, V.; Jitpakdee, K.; Sarasombath, P. Automatic Detection, Classification, and Grading of Lumbar Intervertebral Disc Degeneration Using an Artificial Neural Network Model. Diagnostics 2023, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, F.; Galbusera, F.; Tao, Y.; Kienle, A.; Beer, M.; Wilke, H.J. A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data. Investig. Radiol. 2021, 56, 78–85. [Google Scholar] [CrossRef]
- Zheng, H.D.; Sun, Y.L.; Kong, D.W.; Yin, M.C.; Chen, J.; Lin, Y.P.; Ma, X.F.; Wang, H.S.; Yuan, G.J.; Yao, M.; et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI. Nat. Commun. 2022, 13, 841. [Google Scholar] [CrossRef]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Bacco, L.; Vollero, L.; Vadala, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5971. [Google Scholar] [CrossRef]
- Staartjes, V.E.; de Wispelaere, M.P.; Vandertop, W.P.; Schroder, M.L. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: Feasibility of center-specific modeling. Spine J. Off. J. N. Am. Spine Soc. 2019, 19, 853–861. [Google Scholar] [CrossRef]
- Farshad-Amacker, N.A.; Farshad, M.; Winklehner, A.; Andreisek, G. MR imaging of degenerative disc disease. Eur. J. Radiol. 2015, 84, 1768–1776. [Google Scholar] [CrossRef]
- Gundry, C.R.; Fritts, H.M. Magnetic resonance imaging of the musculoskeletal system. Part 8. The spine, section 2. Clin. Orthop. Relat. Res. 1997, 343, 260–271. [Google Scholar] [CrossRef]
- Waxenbaum, J.A.; Reddy, V.; Futterman, B. Anatomy, Back, Intervertebral Discs. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A deep look into radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Chan, H.P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep Learning in Medical Image Analysis. Adv. Exp. Med. Biol. 2020, 1213, 3–21. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Haggstrom, I.; Szczypinski, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Liliang, P.C.; Lu, K.; Liang, C.L.; Chen, Y.W.; Tsai, Y.D.; Tu, Y.K. Nucleoplasty for treating lumbar disk degenerative low back pain: An outcome prediction analysis. J. Pain Res. 2016, 9, 893–898. [Google Scholar] [CrossRef]
- Manchikanti, L.; Falco, F.J.; Benyamin, R.M.; Caraway, D.L.; Deer, T.R.; Singh, V.; Hameed, H.; Hirsch, J.A. An update of the systematic assessment of mechanical lumbar disc decompression with nucleoplasty. Pain Physician 2013, 16, SE25–SE54. [Google Scholar] [CrossRef]
- Eichen, P.M.; Achilles, N.; Konig, V.; Mosges, R.; Hellmich, M.; Himpe, B.; Kirchner, R. Nucleoplasty, a minimally invasive procedure for disc decompression: A systematic review and meta-analysis of published clinical studies. Pain Physician 2014, 17, E149–E173. [Google Scholar]
- Yin, H.; Zhang, X.; Huang, Z.; Song, Y.; Zhu, Q. Efficacy of Single Level Versus Double Levels Surgery of Percutaneous Disc Nucleoplasty (PDN) Approach in Treating Lumbar Disc Herniation. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930000. [Google Scholar] [CrossRef] [PubMed]
- Klessinger, S. The frequency of re-surgery after lumbar disc Nucleoplasty in a ten-year period. Clin. Neurol. Neurosurg. 2018, 170, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Cincu, R.; Lorente Fde, A.; Gomez, J.; Eiras, J.; Agrawal, A. One decade follow up after nucleoplasty in the management of degenerative disc disease causing low back pain and radiculopathy. Asian J. Neurosurg. 2015, 10, 21–25. [Google Scholar] [CrossRef]
- Chen, C.H.; Chiu, Y.P.; Ji, H.R.; Wu, C.Y.; Guo, J.H.; Jaw, F.S.; Chiu, C.D. Analysis of the clinical and radiological outcomes of percutaneous cervical nucleoplasty: A case-control study. PLoS ONE 2022, 17, e0278883. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.Y.; Yu, D.W.; Feng, T.X.; Fu, B.F.; Zhang, C.; Su, J.; Li, Y.D.; Yang, G.; Wang, P. Comparison of clinical efficacy between percutaneous endoscopic transforaminal discectomy and coblation nucleoplasty in the treatment of inclusive lumbar disc herniation. Zhongguo Gu Shang China J. Orthop. Traumatol. 2023, 36, 17–24. [Google Scholar] [CrossRef]
- Streitparth, F.; Disch, A.C. Interventions on the intervertebral discs. Indications, techniques and evidence levels. Der Radiol. 2015, 55, 868–877. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine learning from theory to algorithms: An overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. Acm 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Kunimatsu, A.; Kiryu, S.; Abe, O. Deep learning with convolutional neural network in radiology. Jpn. J. Radiol. 2018, 36, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lee, S.H.; Chen, D. Intradiscal pressure study of percutaneous disc decompression with nucleoplasty in human cadavers. Spine 2003, 28, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Karaman, H.; Tufek, A.; Olmez Kavak, G.; Yildirim, Z.B.; Temel, V.; Celik, F.; Akdemir, M.S.; Kaya, S. Effectiveness of nucleoplasty applied for chronic radicular pain. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, CR461–CR466. [Google Scholar] [CrossRef]
Clinical Characteristics (n = 181) | |
---|---|
Male | 98 (54.1%) |
Age (years) * | 45.4 ± 10.4 |
Height (cm) *,a | 165.6 ± 8.4 |
Weight (kg) *,b | 69.0 ± 12.7 |
BMI *,c | 25.3 ± 3.7 |
Operation Items | Non-Significant Improvement (IR < 80%) | Significant Improvement (IR ≥ 80%) |
---|---|---|
Number of patients | 97 | 84 |
Date Interval Between Image and Op (days) * | 17.5 ± 23.5 | 17.5 ± 27.6 |
Op Segment Num * | 1.8 ± 0.7 | 1.7 ± 0.7 |
Op Segment/MRI Axial T2 Total Num | 171 | 143 |
L2/L3 | 12 (7.0%) | 2 (1.4%) |
L3/L4 | 24 (14.0%) | 25 (17.5%) |
L4/L5 | 76 (44.4%) | 68 (47.6%) |
L5/S1 | 59 (34.5%) | 48 (33.6%) |
VAS | ||
Before Op * | 7.0 ± 1.8 | 7.7 ± 1.8 |
After Op * | 3.6 ± 1.3 | 0.7 ± 0.5 |
Radiomic Feature Items | Non-Significant Improvement (dVAS < 80%) | Significant Improvement (dVAS ≥ 80%) | p Value |
---|---|---|---|
diagnostics_Image-original_Mean | 1368.18 ± 743.97 | 1504.12 ± 732.85 | 0.406 |
diagnostics_Image-original_Minimum | −26.80 ± 153.84 | −23.14 ± 168.39 | 0.310 |
diagnostics_Image-original_Maximum | 5235.06 ± 2482.10 | 5612.69 ± 2411.79 | 0.481 |
original_firstorder_10Percentile | 608.20 ± 371.87 | 677.73 ± 373.53 | 0.320 |
original_firstorder_90Percentile | 2600.52 ± 1342.56 | 2830.89 ± 1314.54 | 0.333 |
original_firstorder_Energy | 163,674,023,588.18 ± 132,128,707,225.62 | 188,331,818,772.32 ± 132,077,417,316.23 | 0.800 |
original_firstorder_Entropy | 6.30 ± 1.04 | 6.47 ± 0.99 | 0.223 |
original_firstorder_InterquartileRange | 1033.82 ± 606.15 | 1114.88 ± 629.7 | 0.780 |
original_firstorder_Kurtosis | 4.57 ± 1.81 | 4.7 ± 1.76 | 0.985 |
original_firstorder_Maximum | 5235.06 ± 2482.1 | 5612.69 ± 2411.79 | 0.481 |
original_firstorder_MeanAbsoluteDeviation | 657.37 ± 331.50 | 710.06 ± 333.02 | 0.551 |
original_firstorder_Mean | 1368.17 ± 743.97 | 1504.11 ± 732.84 | 0.406 |
original_firstorder_Median | 1066.95 ± 619.43 | 1187.38 ± 617.89 | 0.863 |
original_firstorder_Minimum | −26.80 ± 153.84 | −23.14 ± 168.39 | 0.310 |
original_firstorder_Range | 5261.86 ± 2543.46 | 5635.84 ± 2446.62 | 0.436 |
original_firstorder_RobustMeanAbsoluteDeviation | 450.48 ± 249.17 | 484.75 ± 256.48 | 0.931 |
original_firstorder_RootMeanSquared | 1601.56 ± 837.35 | 1754.75 ± 824.08 | 0.427 |
original_firstorder_Skewness | 1.34 ± 0.45 | 1.36 ± 0.46 | 0.788 |
original_firstorder_TotalEnergy | 163,674,023,588.18 ± 132,128,707,225.62 | 188,331,818,772.32 ± 132,077,417,316.23 | 0.800 |
original_firstorder_Uniformity | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.248 |
original_firstorder_Variance | 839,905.29 ± 626,984.51 | 957,832.26 ± 655,527.73 | 0.633 |
original_glcm_Autocorrelation | 5530.37 ± 4687.35 | 6248.81 ± 4372.8 | 0.996 |
original_glcm_ClusterProminence | 163,352,102.96 ± 173,653,483.58 | 205,207,752.11 ± 205,943,224.75 | 0.047 |
original_glcm_ClusterShade | 543,555.56 ± 482,508.89 | 655,848.32 ± 571,342.03 | 0.092 |
original_glcm_ClusterTendency | 5231.25 ± 3910.18 | 5971.74 ± 4095.13 | 0.626 |
original_glcm_Contrast | 145.71 ± 110.52 | 161.72 ± 116.18 | 0.323 |
original_glcm_Correlation | 0.95 ± 0.01 | 0.95 ± 0.02 | 0.207 |
original_glcm_DifferenceAverage | 6.98 ± 3.76 | 7.43 ± 3.78 | 0.832 |
original_glcm_DifferenceEntropy | 3.99 ± 1.01 | 4.10 ± 0.97 | 0.233 |
original_glcm_DifferenceVariance | 81.62 ± 60.34 | 90.76 ± 63.17 | 0.294 |
original_glcm_Id | 0.32 ± 0.15 | 0.30 ± 0.14 | 0.101 |
original_glcm_Idm | 0.25 ± 0.17 | 0.23 ± 0.16 | 0.077 |
original_glcm_Idmn | 1.00 ± 0.00 | 1 ± 0.00 | 0.320 |
original_glcm_Idn | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.356 |
original_glcm_Imc1 | −0.28 ± 0.07 | −0.28 ± 0.06 | 0.336 |
original_glcm_Imc2 | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.354 |
original_glcm_InverseVariance | 0.23 ± 0.13 | 0.21 ± 0.12 | 0.089 |
original_glcm_JointAverage | 56.78 ± 32.27 | 62.09 ± 30.8 | 0.360 |
original_glcm_JointEnergy | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.569 |
original_glcm_JointEntropy | 10.86 ± 2.08 | 11.14 ± 1.98 | 0.183 |
original_glcm_MCC | 0.95 ± 0.01 | 0.95 ± 0.01 | 0.260 |
original_glcm_MaximumProbability | 0.01 ± 0.02 | 0.01 ± 0.03 | 0.255 |
original_glcm_SumAverage | 113.56 ± 64.53 | 124.17 ± 61.59 | 0.360 |
original_glcm_SumEntropy | 7.26 ± 1.04 | 7.42 ± 0.99 | 0.235 |
original_glcm_SumSquares | 1344.24 ± 1003.55 | 1533.37 ± 1049.85 | 0.627 |
original_glrlm_GrayLevelNonUniformity | 882.08 ± 595.29 | 793.96 ± 546.74 | 0.174 |
original_glrlm_GrayLevelNonUniformityNormalized | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.170 |
original_glrlm_GrayLevelVariance | 1356.41 ± 1003.47 | 1544.7 ± 1048.67 | 0.648 |
original_glrlm_HighGrayLevelRunEmphasis | 5689.55 ± 4760.94 | 6421.58 ± 4446.22 | 0.976 |
original_glrlm_LongRunEmphasis | 1.64 ± 0.86 | 1.58 ± 1.07 | 0.588 |
original_glrlm_LongRunHighGrayLevelEmphasis | 6413.82 ± 5129 | 7259.89 ± 4796.66 | 0.994 |
original_glrlm_LongRunLowGrayLevelEmphasis | 0.03 ± 0.07 | 0.03 ± 0.11 | 0.719 |
original_glrlm_LowGrayLevelRunEmphasis | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.321 |
original_glrlm_RunEntropy | 6.89 ± 0.64 | 7.01 ± 0.61 | 0.357 |
original_glrlm_RunLengthNonUniformity | 36,993.99 ± 9660.69 | 38,071.55 ± 8999.26 | 0.069 |
original_glrlm_RunLengthNonUniformityNormalized | 0.82 ± 0.14 | 0.83 ± 0.13 | 0.087 |
original_glrlm_RunPercentage | 0.88 ± 0.11 | 0.90 ± 0.10 | 0.095 |
original_glrlm_RunVariance | 0.28 ± 0.43 | 0.26 ± 0.59 | 0.762 |
original_glrlm_ShortRunEmphasis | 0.92 ± 0.07 | 0.92 ± 0.07 | 0.113 |
original_glrlm_ShortRunHighGrayLevelEmphasis | 5532.21 ± 4666.78 | 6239.28 ± 4356.67 | 0.976 |
original_glrlm_ShortRunLowGrayLevelEmphasis | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.162 |
original_glszm_GrayLevelNonUniformity | 468.18 ± 123.28 | 447.00 ± 123.74 | 0.781 |
original_glszm_GrayLevelNonUniformityNormalized | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.273 |
original_glszm_GrayLevelVariance | 1388.83 ± 1007.04 | 1575.18 ± 1050.35 | 0.687 |
original_glszm_HighGrayLevelZoneEmphasis | 5945.45 ± 4826.46 | 6695.76 ± 4512.44 | 0.949 |
original_glszm_LargeAreaEmphasis | 69.67 ± 225.12 | 227.45 ± 1642.76 | 0.013 |
original_glszm_LargeAreaHighGrayLevelEmphasis | 12,476.00 ± 7380.85 | 14,578.55 ± 17,349.9 | 0.219 |
original_glszm_LargeAreaLowGrayLevelEmphasis | 4.33 ± 18.45 | 23.47 ± 179.94 | 0.006 |
original_glszm_LowGrayLevelZoneEmphasis | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.244 |
original_glszm_SizeZoneNonUniformity | 22,268.19 ± 11,103.95 | 23,395 ± 10,680.69 | 0.170 |
original_glszm_SizeZoneNonUniformityNormalized | 0.61 ± 0.17 | 0.62 ± 0.16 | 0.186 |
original_glszm_SmallAreaEmphasis | 0.79 ± 0.12 | 0.81 ± 0.11 | 0.149 |
original_glszm_SmallAreaHighGrayLevelEmphasis | 5360.88 ± 4462.06 | 6022.88 ± 4164.8 | 0.947 |
original_glszm_SmallAreaLowGrayLevelEmphasis | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.170 |
original_glszm_ZoneEntropy | 7.71 ± 0.31 | 7.79 ± 0.30 | 0.622 |
original_glszm_ZonePercentage | 0.67 ± 0.23 | 0.69 ± 0.21 | 0.068 |
original_glszm_ZoneVariance | 65.35 ± 220.24 | 223.42 ± 1635.93 | 0.012 |
original_gldm_DependenceEntropy | 7.84 ± 0.48 | 7.94 ± 0.48 | 0.476 |
original_gldm_DependenceNonUniformity | 21,414.15 ± 8701.89 | 22,337.35 ± 8387.78 | 0.208 |
original_gldm_DependenceNonUniformityNormalized | 0.43 ± 0.17 | 0.45 ± 0.17 | 0.208 |
original_gldm_DependenceVariance | 1.21 ± 1.26 | 1.06 ± 1.14 | 0.042 |
original_gldm_GrayLevelNonUniformity | 1220.12 ± 1123.5 | 1084.80 ± 1108.27 | 0.248 |
original_gldm_GrayLevelVariance | 1343.93 ± 1003.18 | 1532.64 ± 1048.85 | 0.633 |
original_gldm_HighGrayLevelEmphasis | 5605.65 ± 4740.08 | 6331.07 ± 4425.20 | 0.994 |
original_gldm_LargeDependenceEmphasis | 5.65 ± 5.46 | 5.07 ± 5.33 | 0.133 |
original_gldm_LargeDependenceHighGrayLevelEmphasis | 11,425.26 ± 7930.90 | 13,104.71 ± 7636.59 | 0.951 |
original_gldm_LargeDependenceLowGrayLevelEmphasis | 0.14 ± 0.36 | 0.13 ± 0.42 | 0.741 |
original_gldm_LowGrayLevelEmphasis | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.399 |
original_gldm_SmallDependenceEmphasis | 0.61 ± 0.22 | 0.63 ± 0.21 | 0.090 |
original_gldm_SmallDependenceHighGrayLevelEmphasis | 4552.78 ± 4029.25 | 5112.5 ± 3752.87 | 0.964 |
original_gldm_SmallDependenceLowGrayLevelEmphasis | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.075 |
Model | Accuracy | Sensitivity | Specificity | F1 Score | AUC |
---|---|---|---|---|---|
SVM | 0.52 (0.44–0.56) | 0.52 (0.45–0.62) | 0.52 (0.37–0.60) | 0.49 (0.46–0.54) | 0.53 (0.44–0.56) |
LGBM | 0.59 (0.52–0.69) | 0.57 (0.41–0.79) | 0.60 (0.29–0.89) | 0.56 (0.52–0.60) | 0.59 (0.52–0.67) |
XGB | 0.59 (0.48–0.69) | 0.55 (0.42–0.69) | 0.61 (0.40–0.86) | 0.55 (0.44–0.64) | 0.56 (0.49–0.68) |
XGB based on RF | 0.61 (0.50–0.67) | 0.59 (0.46–0.66) | 0.62 (0.38–0.76) | 0.58 (0.51–0.62) | 0.61 (0.51–0.66) |
CatBoost | 0.63 (0.56–0.69) | 0.70 (0.52–0.86) | 0.58 (0.44–0.80) | 0.63 (0.56–0.74) | 0.60 (0.57–0.70) |
iRF | 0.76 (0.70–0.80) | 0.69 (0.62–0.77) | 0.83 (0.65–0.94) | 0.73 (0.71–0.76) | 0.77 (0.73–0.83) |
Model | TP | TN | FP | FN |
---|---|---|---|---|
SVM | 74 | 89 | 82 | 69 |
LGBM | 82 | 102 | 69 | 61 |
XGB | 79 | 105 | 66 | 64 |
XGB based on RF | 84 | 106 | 65 | 59 |
CatBoost | 100 | 99 | 72 | 43 |
iRF | 98 | 142 | 29 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, P.-F.; Chang, R.C.-H.; Lai, Y.-C.; Wu, K.-C.; Wang, K.-P.; Chiu, Y.-P.; Ji, H.-R.; Kao, C.-H.; Chiu, C.-D. Machine Learning Assisting the Prediction of Clinical Outcomes following Nucleoplasty for Lumbar Degenerative Disc Disease. Diagnostics 2023, 13, 1863. https://doi.org/10.3390/diagnostics13111863
Chiu P-F, Chang RC-H, Lai Y-C, Wu K-C, Wang K-P, Chiu Y-P, Ji H-R, Kao C-H, Chiu C-D. Machine Learning Assisting the Prediction of Clinical Outcomes following Nucleoplasty for Lumbar Degenerative Disc Disease. Diagnostics. 2023; 13(11):1863. https://doi.org/10.3390/diagnostics13111863
Chicago/Turabian StyleChiu, Po-Fan, Robert Chen-Hao Chang, Yung-Chi Lai, Kuo-Chen Wu, Kuan-Pin Wang, You-Pen Chiu, Hui-Ru Ji, Chia-Hung Kao, and Cheng-Di Chiu. 2023. "Machine Learning Assisting the Prediction of Clinical Outcomes following Nucleoplasty for Lumbar Degenerative Disc Disease" Diagnostics 13, no. 11: 1863. https://doi.org/10.3390/diagnostics13111863
APA StyleChiu, P.-F., Chang, R. C.-H., Lai, Y.-C., Wu, K.-C., Wang, K.-P., Chiu, Y.-P., Ji, H.-R., Kao, C.-H., & Chiu, C.-D. (2023). Machine Learning Assisting the Prediction of Clinical Outcomes following Nucleoplasty for Lumbar Degenerative Disc Disease. Diagnostics, 13(11), 1863. https://doi.org/10.3390/diagnostics13111863