Reliability and Construct Validity of the Yale Pharyngeal Residue Severity Rating Scale: Performance on Videos and Effect of Bolus Consistency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yale Pharyngeal Residue Severity Rating Scale (YPRSRS)
2.2. Frames and Videos Selections
2.3. Raters
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Raters’ Characteristics
3.2. Reliability and Validity in Videos and Frames
3.3. Validity and Reliability According to Raters’ Background
3.4. Influence of Bolus Consistency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logemann, J.A. The evaluation and treatment of swallowing disorders. Curr. Opin. Otolaryngol. Head Neck Surg. 1998, 6, 395–400. [Google Scholar] [CrossRef]
- Logemann, J.A. Swallowing disorders. Best Pract. Res. Clin. Gastroenterol. 2007, 21, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Giraldo-Cadavid, L.F.; Leal-Leaño, L.R.; Leon-Basantes, G.A.; Bastidas, A.R.; Garcia, R.; Ovalle, S.; Abondano-Garavito, J.E. Accuracy of endoscopic and videofluoroscopic evaluations of swallowing for oropharyngeal dysphagia. Laryngoscope 2017, 127, 2002–2010. [Google Scholar] [CrossRef]
- Schindler, A.; Baijens, L.W.J.; Geneid, A.; Pizzorni, N. Phoniatricians and otorhinolaryngologists approaching oropharyngeal dysphagia: An update on FEES. Eur. Arch. Otorhinolaryngol. 2022, 279, 2727–2742. [Google Scholar] [CrossRef] [PubMed]
- Pisegna, J.M.; Langmore, S.E. Parameters of Instrumental Swallowing Evaluations: Describing a Diagnostic Dilemma. Dysphagia 2016, 31, 462–472. [Google Scholar] [CrossRef]
- Yoon, J.A.; Kim, S.H.; Jang, M.H.; Kim, S.D.; Shin, Y.B. Correlations between Aspiration and Pharyngeal Residue Scale Scores for Fiberoptic Endoscopic Evaluation and Videofluoroscopy. Yonsei Med. J. 2019, 60, 1181–1186. [Google Scholar] [CrossRef]
- Swan, K.; Cordier, R.; Brown, T.; Speyer, R. Psychometric Properties of Visuoperceptual Measures of Videofluoroscopic and Fibre-Endoscopic Evaluations of Swallowing: A Systematic Review. Dysphagia 2019, 34, 2–33. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.M.; Leslie, P.; Beale, T.; Payten, C.; Drinnan, M.J. Fibreoptic endoscopic evaluation of swallowing and videofluoroscopy: Does examination type influence perception of pharyngeal residue severity? Clin. Otolaryngol. 2006, 31, 425–432. [Google Scholar] [CrossRef]
- Farneti, D. Pooling score: An endoscopic model for evaluating severity of Dysphagia. Acta Otorhinolaryngol. Ital. 2008, 28, 135–140. [Google Scholar]
- Tohara, H.; Nakane, A.; Murata, S.; Mikushi, S.; Ouchi, Y.; Wakasugi, Y.; Takashima, M.; Chiba, Y.; Uematsu, H. Inter- and intra-rater reliability in fibroptic endoscopic evaluation of swallowing. J. Oral Rehabil. 2010, 37, 884–891. [Google Scholar] [CrossRef]
- Neubauer, P.D.; Rademaker, A.W.; Leder, S.B. The Yale Pharyngeal Residue Severity Rating Scale: An Anatomically Defined and Image-Based Tool. Dysphagia 2015, 30, 521–528. [Google Scholar] [CrossRef]
- Curtis, J.A.; Borders, J.C.; Perry, S.E.; Dakin, A.E.; Seikaly, Z.N.; Troche, M.S. Visual Analysis of Swallowing Efficiency and Safety (VASES): A Standardized Approach to Rating Pharyngeal Residue, Penetration, and Aspiration During FEES. Dysphagia 2022, 37, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Park, W.Y.; Lee, T.H.; Ham, N.S.; Park, J.W.; Lee, Y.G.; Cho, S.J.; Lee, J.S.; Hong, S.J.; Jeon, S.R.; Kim, H.G.; et al. Adding Endoscopist-Directed Flexible Endoscopic Evaluation of Swallowing to the Videofluoroscopic Swallowing Study Increased the Detection Rates of Penetration, Aspiration, and Pharyngeal Residue. Gut Liver. 2015, 9, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Donzelli, J.; Brady, S.; Wesling, M.; Craney, M. Predictive value of accumulated oropharyngeal secretions for aspiration during video nasal endoscopic evaluation of the swallow. Ann. Otol. Rhinol. Laryngol. 2003, 112, 469–475. [Google Scholar] [CrossRef]
- Murray, J.; Langmore, S.E.; Ginsberg, S.; Dostie, A. The significance of accumulated oropharyngeal secretions and swallowing frequency in predicting aspiration. Dysphagia 1996, 11, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, P.D.; Hersey, D.P.; Leder, S.B. Pharyngeal Residue Severity Rating Scales Based on Fiberoptic Endoscopic Evaluation of Swallowing: A Systematic Review. Dysphagia 2016, 31, 352–359. [Google Scholar] [CrossRef]
- Gerschke, M.; Schöttker-Königer, T.; Förster, A.; Netzebandt, J.F.; Beushausen, U.M. Validation of the German Version of the Yale Pharyngeal Residue Severity Rating Scale. Dysphagia 2019, 34, 308–314. [Google Scholar] [CrossRef]
- Atar, Y.; Atar, S.; Ilgin, C.; Anarat, M.E.A.; Uygan, U.; Uyar, Y. Validity and Reliability of the Turkish Translation of the Yale Pharyngeal Residue Severity Rating Scale. Dysphagia 2022, 37, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Pilz, W.; Vanbelle, S.; Kremer, B.; van Hooren, M.R.; van Becelaere, T.; Roodenburg, N.; Baijens, L.W. Observers’ Agreement on Measurements in Fiberoptic Endoscopic Evaluation of Swallowing. Dysphagia 2016, 31, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Newman, R.; Vilardell, N.; Clavé, P.; Speyer, R. Effect of Bolus Viscosity on the Safety and Efficacy of Swallowing and the Kinematics of the Swallow Response in Patients with Oropharyngeal Dysphagia: White Paper by the European Society for Swallowing Disorders (ESSD). Dysphagia 2016, 31, 232–249. [Google Scholar] [CrossRef] [Green Version]
- Cichero, J.A.Y.; Lam, P.T.L.; Chen, J.; Dantas, R.O.; Duivestein, J.; Hanson, B.; Kayashita, J.; Pillay, M.; Riquelme, L.F.; Steele, C.M.; et al. Release of updated International Dysphagia Diet Standardisation Initiative Framework (IDDSI 2.0). J. Texture Stud. 2020, 51, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Brito-de La Fuente, E.; Turcanu, M.; Ekberg, O.; Callegos, C. Rheological Aspects of Swallowing and Dysphagia: Shear and Elongational Flows. In Dysphagia; Ekberg, O., Ed.; Springer: Cham, Switzerland, 2017; pp. 287–716. [Google Scholar] [CrossRef]
- Baixauli, R.; Bolivar-Prados, M.; Ismael-Mohammed, K.; Clavé, P.; Tárrega, A.; Laguna, L. Characterization of Dysphagia Thickeners Using Texture Analysis—What Information Can Be Useful? Gels 2022, 8, 430. [Google Scholar] [CrossRef]
- Clavé, P.; De Kraa, M.; Arreola, V.; Girvent, M.; Farré, R.; Palomera, E.; Serra-Prat, M. The effect of bolus viscosity on swallowing function in neurogenic Dysphagia Aliment. Pharmacol. Ther. 2006, 24, 1385–1394. [Google Scholar] [CrossRef]
- Team, R.; Core, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 28 July 2022).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiss, J.L. Statistical Methods for Rates and Proportions; John Wiley: New York, NY, USA, 1981; pp. 38–46. [Google Scholar]
- Gwet, K.L. Testing the Difference of Correlated Agreement Coefficients for Statistical Significance. Educ. Psychol. Meas. 2016, 76, 609–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silbergleit, A.K.; Cook, D.; Kienzle, S.; Boettcher, E.; Myers, D.; Collins, D.; Peterson, E.; Silbergleit, M.A.; Silbergleit, R. Impact of formal training on agreement of videofluoroscopic swallowing study interpretation across and within disciplines. Abdom. Radiol. 2018, 43, 938–2944. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.A.; Seikaly, Z.N.; Dakin, A.E.; Troche, M.S. Detection of Aspiration, Penetration, and Pharyngeal Residue During Flexible Endoscopic Evaluation of Swallowing (FEES): Comparing the Effects of Color, Coating, and Opacity. Dysphagia 2021, 36, 207–215. [Google Scholar] [CrossRef]
Valleculae | |||
---|---|---|---|
I | None | 0% | No residue |
II | Trace | 1–5% | Trace coating of the mucosa |
III | Mild | 5–25% | Epiglottic ligament visible |
IV | Moderate | 25–50% | Epiglottic ligament covered |
V | Severe | >50% | Filled to epiglottic rim |
Pyriform sinus | |||
I | None | 0% | No residue |
II | Trace | 1–5% | Trace coating of the mucosa |
III | Mild | 5–25% | Up wall to quarter full |
IV | Moderate | 25–50% | Up wall to half full |
V | Severe | >50% | Filled to aryepiglottic fold |
All Participants (n = 29) | ||
---|---|---|
Age: mean age ± DS | 30.69 ± 6.05 | |
Sex (females): n (%) | 23 (79.31) | |
Speech and language pathologists: n (%) | 20 (68.96) | |
Medical doctors: n (%) | 9 (31.03) | |
Years of experience: average ± DS | 4.87 ± 3.84 | |
N FEES 1 | >100: n (%) | 11 (37.93) |
50–100: n (%) | 11 (37.93) | |
10–49: n (%) | 7 (24.14) | |
Participate 2 regularly at FEES: n (%) | 18 (62.07) | |
Perform 3 FEES regularly: n (%) | 6 (20.68) | |
Previous clinical experience with the YPRSRS: n(%) | 22 (75.86) | |
Post basic training 4: n (%) | 12 (41.37) |
Frames Averaged Cohen’s Kappa ± Se | Videos Averaged Cohen’s Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae | 0.89 ± 0.15 | 0.79 ± 0.35 | t (28) = 3.13 | 0.004 |
Pyriform sinus | 0.87 ± 0.03 | 0.76 ± 0.16 | t (28) = 4.13 | <0.001 |
Frames Averaged Cohen’s Kappa ± Se | Videos Averaged Cohen’s Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae | 0.93 ± 0.01 | 0.87 ± 0.03 | t (14) = 1.90 | 0.078 |
Pyriform sinus | 0.84 ± 0.03 | 0.86 ± 0.02 | t (14) = −0.62 | 0.548 |
Frames Fleiss Kappa ± Se | Videos Fleiss Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae | 0.85 ± 0.04 | 0.70 ± 0.09 | t (14) = −1.59 | 0.133 |
Pyriform sinus | 0.82 ± 0.05 | 0.67 ± 0.09 | t (14) = −2.15 | 0.049 |
SLPs (n = 24) Average Cohen’s Kappa ± Se | MDs (n = 5) Avarage Cohen’s Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae frames | 0.89 ± 0.02 | 0.89 ± 0.02 | t (27) = 0.20 | 0.841 |
Valleculae videos | 0.80 ± 0.04 | 0.77 ± 0.07 | t (27) = −0.35 | 0.727 |
Pyriform sinus frames | 0.86 ± 0.02 | 0.90 ± 0.01 | t (27) = −0.87 | 0.394 |
Pyriform sinus videos | 0.75 ± 0.03 | 0.82 ± 0.05 | t (27) = −0.87 | 0.392 |
SLPs (n = 11) Average Cohen’s Kappa ± Se | MDs (n = 4) Avarage Cohen’s Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae frames | 0.94 ±0.01 | 0.92 ± 0.02 | t (13) = 0.68 | 0.509 |
Valleculae videos | 0.87 ± 0.04 | 0.89 ± 0.04 | t (13) = −0.25 | 0.804 |
Pyriform sinus frames | 0.87 ± 0.03 | 0.74 ± 0.05 | t (13) = 2.43 | 0.030 |
Pyriform sinus videos | 0.87 ± 0.03 | 0.83 ± 0.04 | t (13) = 0.719 | 0.485 |
SLPs (n = 24) Fleiss Kappa ± Se | MDs (n = 5) Fleiss Kappa ± Se | t-Test | ||
---|---|---|---|---|
t (df) | p | |||
Valleculae frames | 0.85 ± 0.04 | 0.85 ± 0.08 | t (27.1) = 0.08 | 0.936 |
Valleculae videos | 0.71 ± 0.09 | 0.65 ± 0.13 | t (24.7) = 0.40 | 0.694 |
Pyriform sinus frames | 0.81 ± 0.05 | 0.85 ± 0.06 | t (27.5) = 0.45 | 0.657 |
Pyriform sinus videos | 0.66 ± 0.09 | 0.79 ± 0.10 | t (27.6) = 0.95 | 0.351 |
Thin Liquids | Pureed Food | Solid Food | p-Value | |||
---|---|---|---|---|---|---|
Averaged Cohen’s Kappa ± Se | Averaged Cohen’s Kappa ± Se | Averaged Cohen’s Kappa ± Se | Thin Liquids vs. Pureed Food | Thin Liquids vs. Solid Food | Pureed Food vs. Solid Food | |
Frames | 0.56 ± 0.04 | 0.88 ± 0.01 | 0.85 ± 0.02 | <0.001 | <0.001 | 0.711 |
Videos | 0.44 ± 0.05 | 0.88 ±0.02 | 0.57 ± 0.07 | <0.001 | 0.148 | <0.001 |
Thin Liquids | Pureed Food | Solid Food | p-Value | |||
---|---|---|---|---|---|---|
Averaged Cohen’s Kappa ± Se | Averaged Cohen’s Kappa ± Se | Averaged Cohen’s Kappa ± Se | Thin Liquids vs. Pureed Food | Thin Liquids vs. Solid Food | Pureed Food vs. Solid Food | |
Frames | 0.53 ± 0.06 | 0.82 ± 0.05 | 0.89 ± 0.02 | <0.001 | <0.001 | 0.518 |
Videos | 0.46 ±0.08 | 0.89 ± 0.03 | 0.81 ± 0.05 | <0.001 | <0.001 | 0.618 |
Thin Liquids | Pureed Food | Solid Food | p-Value | |||
---|---|---|---|---|---|---|
Fleiss Kappa ± Se | Fleiss Kappa ± Se | Fleiss Kappa ± Se | Thin Liquids vs. Pureed Food | Thin Liquids vs. Solid Food | Pureed Food vs. Solid Food | |
Frames | 0.38 ± 0.09 | 0.84 ± 0.08 | 0.82 ± 0.06 | 0.001 | 0.001 | 0.991 |
Videos | 0.22 ± 0.09 | 0.81 ± 0.07 | 0.48 ± 0.10 | <0.001 | 0.172 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocca, S.; Pizzorni, N.; Valenza, N.; Negri, L.; Schindler, A. Reliability and Construct Validity of the Yale Pharyngeal Residue Severity Rating Scale: Performance on Videos and Effect of Bolus Consistency. Diagnostics 2022, 12, 1897. https://doi.org/10.3390/diagnostics12081897
Rocca S, Pizzorni N, Valenza N, Negri L, Schindler A. Reliability and Construct Validity of the Yale Pharyngeal Residue Severity Rating Scale: Performance on Videos and Effect of Bolus Consistency. Diagnostics. 2022; 12(8):1897. https://doi.org/10.3390/diagnostics12081897
Chicago/Turabian StyleRocca, Sara, Nicole Pizzorni, Nadia Valenza, Luca Negri, and Antonio Schindler. 2022. "Reliability and Construct Validity of the Yale Pharyngeal Residue Severity Rating Scale: Performance on Videos and Effect of Bolus Consistency" Diagnostics 12, no. 8: 1897. https://doi.org/10.3390/diagnostics12081897
APA StyleRocca, S., Pizzorni, N., Valenza, N., Negri, L., & Schindler, A. (2022). Reliability and Construct Validity of the Yale Pharyngeal Residue Severity Rating Scale: Performance on Videos and Effect of Bolus Consistency. Diagnostics, 12(8), 1897. https://doi.org/10.3390/diagnostics12081897