Emerging Targets for the Treatment of Osteoarthritis: New Investigational Methods to Identify Neo-Vessels as Possible Targets for Embolization
Abstract
1. Introduction
2. Global Prevalence, Natural History, Risk Factors, Pathophysiology, and Treatment of OA
2.1. Epidemiology and Economic Burden of OA
2.2. Natural History, Prognosis, and Imaging of OA
2.3. Pathophysiology: Understanding of the Balance between Pro and Anti-Angiogenic Cytokines, Inflammatory Biomarkers
2.4. A Review of Translational Animal Models
2.5. GAE: Anatomy of Genicular Arteries
2.6. A Continued Need for OA Treatment
3. New Opportunities in the Treatment of OA
4. Challenges and Recommendation
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bonnet, C.S. Osteoarthritis, angiogenesis and inflammation. Rheumatology 2005, 44, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mapp, P.I.; Walsh, D.A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 390–398. [Google Scholar] [CrossRef]
- Costa, C.; Incio, J.; Soares, R. Angiogenesis and chronic inflammation: Cause or consequence? Angiogenesis 2007, 10, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; Ramírez, C.; Rojas, O.I.; Casas-Mejía, O.; Kouri, J.B.; Vega-López, M.A. Menisectomized miniature Vietnamese pigs develop articular cartilage pathology resembling osteoarthritis. Path. Res. Pract. 2015, 211, 829–838. [Google Scholar] [CrossRef]
- Mapp, P.I.; Walsh, D.A.; Bowyer, J.; Maciewicz, R.A. Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis. Osteoarthr. Cartil. 2010, 18, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Lin, A.S.; Kundu, K.; Levenston, M.E.; Murthy, N.; Guldberg, R.E. Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis Rheum. 2012, 64, 1899–1908. [Google Scholar] [CrossRef]
- Talaie, R.; Richards, M.; Krug, H.; Dorman, C.; Noorbaloochi, S.; Golzarian, J. 4:12 PM Abstract No. 209 Neovascularization in knee osteoarthritis: A new mouse model using micro computed tomography to delineate pathological vascular remodeling. J. Vasc. Interv. Radiol. 2018, 29, S91. [Google Scholar] [CrossRef]
- Saito, M.; Sasho, T.; Yamaguchi, S.; Ikegawa, N.; Akagi, R.; Muramatsu, Y.; Mukoyama, S.; Ochiai, N.; Nakamura, J.; Nakagawa, K.; et al. Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model. Osteoarthr. Cartil. 2012, 20, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J.; Bray, R.C. Vascular volume determination of articular tissues in normal and anterior cruciate ligament-deficient rabbit knees. Anat. Rec. 1998, 251, 207–213. [Google Scholar] [CrossRef]
- Jansen, H.; Meffert, R.H.; Birkenfeld, F.; Petersen, W.; Pufe, T. Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model. Ann. Anat. 2012, 194, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Bray, R.C.; Smith, J.A.; Eng, M.K.; Leonard, C.A.; Sutherland, C.A.; Salo, P.T. Vascular response of the meniscus to injury: Effects of immobilization. J. Orthop. Res. 2001, 19, 384–390. [Google Scholar] [CrossRef]
- Ashraf, S.; Walsh, D.A. Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 2008, 20, 573–580. [Google Scholar] [CrossRef]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S.; Kaneko, T. Midterm Clinical Outcomes and MR Imaging Changes after Transcatheter Arterial Embolization as a Treatment for Mild to Moderate Radiographic Knee Osteoarthritis Resistant to Conservative Treatment. J. Vasc. Interv. Radiol. 2017, 28, 995–1002. [Google Scholar] [CrossRef]
- Bagla, S.; Piechowiak, R.; Hartman, T.; Orlando, J.; Del Gaizo, D.; Isaacson, A. Genicular artery embolization for the treatment of knee pain secondary to osteoarthritis. J. Vasc. Interv. Radiol. 2020, 31, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Landers, S.; Hely, R.; Page, R.; Maister, N.; Hely, A.; Harrison, B.; Gill, S. Genicular artery embolization to improve pain and function in early-stage knee osteoarthritis-24-month pilot study results. J. Vasc. Interv. Radiol. 2020, 31, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- Okuno, Y.; Oguro, S.; Iwamoto, W.; Miyamoto, T.; Ikegami, H.; Matsumura, N. Short-term results of transcatheter arterial embolization for abnormal neovessels in patients with adhesive capsulitis: A pilot study. J. Shoulder Elbow Surg. 2014, 23, e199–e206. [Google Scholar] [CrossRef]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S. Transcatheter Arterial Embolization as a Treatment for Medial Knee Pain in Patients with Mild to Moderate Osteoarthritis. Cardiovasc. Intervent. Radiol. 2014, 38, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Little, M.W.; Gibson, M.; Briggs, J.; Speirs, A.; Yoong, P.; Ariyanayagam, T.; Davies, N.; Tayton, E.; Tavares, S.; MacGill, S.; et al. Genicular artery embolization in patients with osteoarthritis of the knee (GENESIS) using permanent microspheres: Interim analysis. Cardiovasc. Intervent. Radiol. 2021, 44, 931–940. [Google Scholar] [CrossRef]
- Sun, C.H.; Gao, Z.L.; Lin, K.; Yang, H.; Zhao, C.Y.; Lu, R.; Wu, L.Y.; Chen, Y. Efficacy analysis of selective genicular artery embolization in the treatment of knee pain secondary to osteoarthritis. Zhonghua Yi Xue Za Zhi 2022, 102, 795–800. [Google Scholar] [CrossRef]
- Casadaban, L.C.; Mandell, J.C.; Epelboym, Y. Genicular Artery Embolization for Osteoarthritis Related Knee Pain: A Systematic Review and Qualitative Analysis of Clinical Outcomes. Cardiovasc. Intervent. Radiol. 2021, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Osteoarthritis (OA). Secondary Osteoarthritis (OA). Available online: https://www.cdc.gov/arthritis/basics/osteoarthritis.htm (accessed on 1 January 2021).
- Felson, D.T.; Zhang, Y.; Hannan, M.T.; Naimark, A.; Weissman, B.N.; Aliabadi, P.; Levy, D. The incidence and natural history of knee osteoarthritis in the elderly, The Framingham Osteoarthritis Study. Arthritis Rheum. 1995, 38, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef]
- Older People Projected to Outnumber Children for First Time in U.S. History. Available online: https://www.census.gov/programs-surveys/popproj.html (accessed on 1 January 2021).
- Maradit Kremers, H.; Larson, D.R.; Crowson, C.S.; Kremers, W.K.; Washington, R.E.; Steiner, C.A.; Jiranek, W.A.; Berry, D.J. Prevalence of Total Hip and Knee Replacement in the United States. J. Bone Jt. Surg. Am. 2015, 97, 1386–1397. [Google Scholar] [CrossRef]
- United States Bone and Joint Initiative. The Burden of Musculoskeletal Diseases in the United States (BMUS), 3rd ed.; United States Bone and Joint Initiative: Rosemont, IL, USA, 2014; Available online: http://www.boneandjointburden.org (accessed on 1 January 2021).
- Losina, E.; Paltiel, A.D.; Weinstein, A.M.; Yelin, E.; Hunter, D.J.; Chen, S.P.; Klara, K.; Suter, L.G.; Solomon, D.H.; Burbine, S.A.; et al. Lifetime medical costs of knee osteoarthritis management in the United States: Impact of extending indications for total knee arthroplasty. Arthritis Care Res. 2015, 67, 203–215. [Google Scholar] [CrossRef]
- Walsh, D.A. Angiogenesis in osteoarthritis and spondylosis: Successful repair with undesirable outcomes. Curr. Opin. Rheumatol. 2004, 16, 609–615. [Google Scholar] [CrossRef]
- Davies, N.M.; Reynolds, J.K.; Undeberg, M.R.; Gates, B.J.; Ohgami, Y.; Vega-Villa, K.R. Minimizing risks of NSAIDs: Cardiovascular, gastrointestinal and renal. Expert Rev. Neurother. 2006, 6, 1643–1655. [Google Scholar] [CrossRef]
- Gill, G.S.; Mills, D.; Joshi, A.B. Mortality Following Primary Total Knee Arthroplasty. J. Bone Jt. Surg. Am. 2003, 85, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Belmont, P.J.J.; Goodman, G.P.; Waterman, B.R.; Bader, J.O.; Schoenfeld, A.J. Thirty-Day Postoperative Complications and Mortality Following Total Knee Arthroplasty: Incidence and Risk Factors Among a National Sample of 15,321 Patients. J. Bone Jt. Surg. Am. 2014, 96, 20–26. [Google Scholar] [CrossRef]
- Ballara, S.C.; Miotla, J.M.; Paleolog, E.M. New vessels, new approaches: Angiogenesis as a therapeutic target in musculoskeletal disorders. Int. J. Exp. Pathol. 2001, 80, 235–250. [Google Scholar] [CrossRef]
- Murata, M.; Yudoh, K.; Masuko, K. The potential role of vascular endothelial growth factor (VEGF) in cartilage. Osteoarthr. Cartil. 2008, 16, 279–286. [Google Scholar] [CrossRef]
- Fenwick, S.A.; Gregg, P.J.; Rooney, P. Osteoarthritic cartilage loses its ability to remain avascular. Osteoarthr. Cartil. 1999, 7, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Adesida, A.B.; Grady, L.M.; Khan, W.S.; Millward-Sadler, S.J.; Salter, D.M.; Hardingham, T.E. Human meniscus cells express hypoxia inducible factor-1α and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res. Ther. 2007, 9, R69. [Google Scholar] [CrossRef] [PubMed]
- Grässel, S.G. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res. Ther. 2014, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.B.; Beggin, A.E.; Lam, A.H.; Kohi, M.P.; Heller, M.B. Geniculate Artery Embolization: Role in Knee Hemarthrosis and Osteoarthritis. RadioGraphics 2022, 42, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Piechowiak, R.; Sajan, A.; Orlando, J.; Canario, D.A.H.; Isaacson, A. Angiographic Analysis of the Anatomical Variants in Genicular Artery Embolization. J. Clin. Interv. Radiol. ISVIR 2022, 6, 18–22. [Google Scholar] [CrossRef]
- Sighary, M.; Sajan, A.; Walsh, J.; Márquez, S. Cadaveric Classification of the Genicular Arteries, with Implications for the Interventional Radiologist. J. Vasc. Interv. Radiol. 2022, 33, 437–444.e1. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.K.; Chapman, G.J.; Findlow, A.H.; Forsythe, L.; Parkes, M.J.; Sultan, J.; Felson, D.T. A new approach to prevention of knee osteoarthritis: Reducing medial load in the contralateral knee. J. Rheomatol. 2013, 40, 309–315. [Google Scholar] [CrossRef]
- O’Grady, A.; Welsh, L.; Gibson, M.; Briggs, J.; Speirs, A.; Little, M. Cadaveric and Angiographic Anatomical Considerations in the Genicular Arterial System: Implications for Genicular Artery Embolisation in Patients with Knee Osteoarthritis. Cardiovasc. Intervent. Radiol. 2022, 45, 80–90. [Google Scholar] [CrossRef]
- Yang, K.; Park, J.H.; Jung, S.J.; Lee, H.; Choi, I.J.; Lee, J.H. Topography of the middle genicular artery is associated with the superior and inferior genicular arteries. Int. J. Morphol. 2017, 35, 913–918. [Google Scholar] [CrossRef]
- Shahid, S.; Saghir, N.; Cawley, O.; Saujani, S. A cadaveric study of the branching pattern and diameter of the genicular arteries: A focus on the middle genicular artery. J. Knee Surg. 2015, 28, 417–424. [Google Scholar] [CrossRef]
- García-Pumarino, R.; Franco, J.M. Anatomical variability of descending genicular artery. Ann. Plast. Surg. 2014, 73, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zheng, X.; Li, Y.; Zhu, L.; Ding, Z. Anatomical study of the descending genicular artery chimeric flaps. J. Investig. Surg. 2020, 33, 422–427. [Google Scholar] [CrossRef]
- Salaria, H.; Atkinson, R. Anatomic study of the middle genicular artery. J. Orthop. Surg. 2008, 16, 47–49. [Google Scholar] [CrossRef]
- Ziegler, T.; Kamolz, L.P.; Vasilyeva, A.; Schintler, M.; Neuwirth, M.; Parvizi, D. Descending genicular artery. Branching patterns and measuring parameters: A systematic review and meta-analysis of several anatomical studies. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 967–975. [Google Scholar] [CrossRef]
- Bettaiah, A.; Venkat, S.; Saraswathi, G. A study of variations in the branching pattern of popliteal artery and its clinical perspective. Int. J. Res. Med. Sci. 2016, 4, 3584–3589. [Google Scholar] [CrossRef][Green Version]
- Singla, R.; Kaushal, S.; Chabbra, U. Popliteal artery branching pattern: A cadaveric study. Eur. J. Anat. 2012, 16, 157–162. [Google Scholar]
- Dubois, G.; Lopez, R.; Puwanarajah, P.; Noyelles, L.; Lauwers, F. The corticoperiosteal medial femoral supracondylar flap: Anatomical study for clinical evaluation in mandibular osteoradionecrosis. Surg. Radiol. Anat. 2010, 32, 971–977. [Google Scholar] [CrossRef]
- Bowers, Z.; Nassereddin, A.; Sinkler, M.A.; Bordoni, B. Anatomy, Bony Pelvis and Lower Limb, Popliteal Artery; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Parvizi, D.; Vasilyeva, A.; Wurzer, P.; Tuca, A.; Lebo, P.; Winter, R.; Clayton, R.P.; Rappl, T.; Schintler, M.V.; Kamolz, L.P.; et al. Anatomy of the vascularized lateral femoral condyle flap. Plast. Reconstr. Surg. 2016, 137, 1024e–1032e. [Google Scholar] [CrossRef]
- Duthon, V.B.; Barea, C.; Abrassart, S.; Fasel, J.H.; Fritschy, D.; Ménétrey, J. Anatomy of the anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 204–213. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, L.A.; Yang, H.; Collins, J.E.; Jarraya, M.; Guermazi, A.; Mandl, L.A.; Martin, S.D.; Wright, J.; Losina, E.; Katz, J.N.; et al. Association of Changes in Effusion-Synovitis With Progression of Cartilage Damage Over Eighteen Months in Patients With Osteoarthritis and Meniscal Tear. Arthritis Rheumatol. 2019, 71, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Niu, J.; Neogi, T.; Goggins, J.; Nevitt, M.C.; Roemer, F.; Torner, J.; Lewis, C.E.; Guermazi, A.; Group, M.I. Synovitis and the risk of knee osteoarthritis: The MOST Study. Osteoarthr. Cartil. 2016, 24, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Wallace, G.; Cro, S.; Dore, C.; King, L.; Kluzek, S.; Price, A.; Roemer, F.; Guermazi, A.; Keen, R.; Arden, N. Associations Between Clinical Evidence of Inflammation and Synovitis in Symptomatic Knee Osteoarthritis: A Cross-Sectional Substudy. Arthritis Care Res. 2017, 69, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hwang, J.H.; Kim, D.H.; So, Y.H.; Park, J.; Cho, S.B.; Kim, J.E.; Kim, Y.J.; Hur, S.; Jae, H.J. Clinical outcomes of transcatheter arterial embolisation for chronic knee pain: Mild-to-moderate versus severe knee osteoarthritis. Cardiovasc. Intervent. Radiol. 2019, 42, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Piechowiak, R.; Hartman, T.; Orlando, J.; Lipscomb, M.; Benefield, T.; Isaacson, A. Multicenter prospective, randomized, sham-controlled study of genicular artery embolization. J. Vasc. Interv. Radiol. 2020, 31, S6. [Google Scholar] [CrossRef]
- Torkian, P.; Golzarian, J.; Chalian, M.; Clayton, A.; Rahimi-Dehgolan, S.; Tabibian, E.; Talaie, R. Osteoarthritis-Related Knee Pain Treated With Genicular Artery Embolization: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 23259671211021356. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, C. Body mass index and risk of knee osteoarthritis: Systematic review and meta-analysis of prospective studies. BMJ Open 2015, 5, e007568. [Google Scholar] [CrossRef]
- De Lange-Brokaar, B.J.; Ioan-Facsinay, A.; Yusuf, E.; Kroon, H.M.; Zuurmond, A.M.; Stojanovic-Susulic, V.; Nelissen, R.G.; Bloem, J.L.; Kloppenburg, M. Evolution of synovitis in osteoarthritic knees and its association with clinical features. Osteoarthr. Cartil. 2016, 24, 1867–1874. [Google Scholar] [CrossRef]
- Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef]
- Siebuhr, A.S.; Bay-Jensen, A.C.; Jordan, J.M.; Kjelgaard-Petersen, C.F.; Christiansen, C.; Abramson, S.B.; Attur, M.; Berenbaum, F.; Kraus, V.; Karsdal, M.A. Inflammation (or synovitis)-driven osteoarthritis: An opportunity for personalizing prognosis and treatment? Scand. J. Rheumatol. 2016, 45, 87–98. [Google Scholar] [CrossRef]
- Kolber, M.K.; Shukla, P.A.; Kumar, A.; Zybulewski, A.; Markowitz, T.; Silberzweig, J.E. Endovascular Management of Recurrent Spontaneous Hemarthrosis After Arthroplasty. Cardiovasc. Intervent. Radiol. 2017, 40, 216–222. [Google Scholar] [CrossRef]
- Weidner, Z.D.; Hamilton, W.G.; Smirniotopoulos, J.; Bagla, S. Recurrent Hemarthrosis Following Knee Arthroplasty Treated with Arterial Embolization. J. Arthroplast. 2015, 30, 2004–2007. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Rholl, K.S.; van Breda, A.; Sterling, K.M.; van Breda, A. Geniculate artery embolization in the management of spontaneous recurrent hemarthrosis of the knee: Case series. J. Vasc. Interv. Radiol. 2013, 24, 439–442. [Google Scholar] [CrossRef]
- Van Baardewijk, L.J.; Hoogeveen, Y.L.; van der Geest, I.C.M.; Schultze Kool, L.J. Embolization of the geniculate arteries is an effective treatment of recurrent hemarthrosis following total knee arthroplasty that can be safely repeated. J. Arthroplast. 2018, 33, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Given, M.F.; Smith, P.; Lyon, S.M.; Robertson, D.; Thomson, K.R. Embolization of spontaneous hemarthrosis post total knee replacement. Cardiovasc. Intervent. Radiol. 2008, 31, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Dye, S.F.; Vaupel, G.L.; Dye, C.C. Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am. J. Sports Med. 1998, 26, 773–777. [Google Scholar] [CrossRef]
- Van Zadelhoff, T.A.; Moelker, A.; Bierma-Zeinstra, S.M.; Bos, K.P.; Krestin, G.P.; Oei, E.H. Safety of Genicular Artery Embolization for the Treatment of Knee Osteoarthritis: Data from the NEO Trial. Osteoarthr. Cartil. 2022, 30, S427. [Google Scholar] [CrossRef]
- Van Zadelhoff, T.A.; Moelker, A.; Bierma-Zeinstra, S.M.A.; Bos, P.K.; Krestin, G.P.; Oei, E.H. Genicular artery embolization as a novel treatment for mild to moderate knee osteoarthritis: Protocol design of a randomized sham-controlled clinical trial. Trials 2022, 23, 1–8. [Google Scholar] [CrossRef]
- Correa, M.P.; Motta-Leal-Filho, J.M.; Lugokeski, R.; Mezzomo, M.; Leite, L.R. GAUCHO-Trial Genicular Artery Embolization Using Imipenem/Cilastatin vs. Microsphere for Knee Osteoarthritis: A Randomized Controlled Trial. Cardiovasc. Intervent. Radiol. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talaie, R.; Torkian, P.; Clayton, A.; Wallace, S.; Cheung, H.; Chalian, M.; Golzarian, J. Emerging Targets for the Treatment of Osteoarthritis: New Investigational Methods to Identify Neo-Vessels as Possible Targets for Embolization. Diagnostics 2022, 12, 1403. https://doi.org/10.3390/diagnostics12061403
Talaie R, Torkian P, Clayton A, Wallace S, Cheung H, Chalian M, Golzarian J. Emerging Targets for the Treatment of Osteoarthritis: New Investigational Methods to Identify Neo-Vessels as Possible Targets for Embolization. Diagnostics. 2022; 12(6):1403. https://doi.org/10.3390/diagnostics12061403
Chicago/Turabian StyleTalaie, Reza, Pooya Torkian, Alexander Clayton, Stephanie Wallace, Hoiwan Cheung, Majid Chalian, and Jafar Golzarian. 2022. "Emerging Targets for the Treatment of Osteoarthritis: New Investigational Methods to Identify Neo-Vessels as Possible Targets for Embolization" Diagnostics 12, no. 6: 1403. https://doi.org/10.3390/diagnostics12061403
APA StyleTalaie, R., Torkian, P., Clayton, A., Wallace, S., Cheung, H., Chalian, M., & Golzarian, J. (2022). Emerging Targets for the Treatment of Osteoarthritis: New Investigational Methods to Identify Neo-Vessels as Possible Targets for Embolization. Diagnostics, 12(6), 1403. https://doi.org/10.3390/diagnostics12061403