An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Variables
2.3. Chest DCE-MRI Protocol
2.4. DCE-MRI Image Analysis
2.5. Statistical Analysis
3. Results
3.1. The Demographic and Clinical Characteristics
3.2. Comparison of Parameters Used for Model Construction between Patients with Different PMT Subtypes
3.3. Univariate ROC Curve Analysis
3.4. Analysis of Variable Importance
3.5. Predictive Models
3.6. Multivariate ROC Curve Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | area under the curve |
CRAT | classification and regression tree |
DCE-MRI | dynamic contrast-enhanced magnetic resonance imaging |
EES | extravascular extracellular space |
Kep | efflux rate constant from tissue EES into the blood plasma |
Ktrans | efflux rate constant from blood plasma into the tissue EES |
PMT | prevascular mediastinal tumor |
RF | random forest |
ROC | receiver-operating-characteristic |
ROI | region of interest |
SVM | support vector machine |
TET | thymic epithelial tumor |
TTP | time to the peak of the concentration curve |
Ve | EES volume per unit volume of tissue |
Vp | blood plasma volume per unit volume of tissue |
References
- Carter, B.W.; Benveniste, M.F.; Madan, R.; Godoy, M.C.; de Groot, P.M.; Truong, M.T.; Rosado-de-Christenson, M.L.; Marom, E.M. ITMIG Classification of Mediastinal Compartments and Multidisciplinary Approach to Mediastinal Masses. Radiogr. A Rev. Publ. Radiol. Soc. N. Am. 2017, 37, 413–436. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Nishino, M.; Gao, W.; Dupuis, J.; Washko, G.R.; Hunninghake, G.M.; Murakami, T.; O’Connor, G.T.; Hatabu, H. Anterior mediastinal masses in the Framingham Heart Study: Prevalence and CT image characteristics. Eur. J. Radiol. Open 2015, 2, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazono, T.; Yamaguchi, K.; Egashira, R.; Mizuguchi, M.; Irie, H. Anterior mediastinal lesions: CT and MRI features and differential diagnosis. Jpn. J. Radiol. 2021, 39, 101–117. [Google Scholar] [CrossRef]
- Roden, A.C.; Fang, W.; Shen, Y.; Carter, B.W.; White, D.B.; Jenkins, S.M.; Spears, G.M.; Molina, J.R.; Klang, E.; Segni, M.D.; et al. Distribution of Mediastinal Lesions Across Multi-Institutional, International, Radiology Databases. J. Thorac. Oncol. 2020, 15, 568–579. [Google Scholar] [CrossRef]
- Ong, C.C.; Teo, L.L. Imaging of anterior mediastinal tumours. Cancer Imaging 2012, 12, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattach, H.; Hasan, S.; Clelland, C.; Pillai, R. Seeding of Stage I Thymoma into the Chest Wall 12 Years After Needle Biopsy. Ann. Thorac. Surg. 2005, 79, 323–324. [Google Scholar] [CrossRef]
- Nagasaka, T.; Nakashima, N.; Nunome, H. Needle tract implantation of thymoma after transthoracic needle biopsy. J. Clin. Pathol. 1993, 46, 278–279. [Google Scholar] [CrossRef]
- Pina-Oviedo, S. Mediastinal Lymphoproliferative Disorders. Adv. Anat. Pathol. 2021, 28, 307–334. [Google Scholar] [CrossRef] [PubMed]
- Dreyling, M.; Thieblemont, C.; Gallamini, A.; Arcaini, L.; Campo, E.; Hermine, O.; Kluin-Nelemans, J.C.; Ladetto, M.; Le Gouill, S.; Iannitto, E.; et al. ESMO Consensus conferences: Guidelines on malignant lymphoma. part 2: Marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann. Oncol. 2013, 24, 857–877. [Google Scholar] [CrossRef] [PubMed]
- Eichenauer, D.A.; Engert, A.; André, M.; Federico, M.; Illidge, T.; Hutchings, M.; Ladetto, M. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25 (Suppl. 3), iii70–iii75. [Google Scholar] [CrossRef] [PubMed]
- Ghielmini, M.; Vitolo, U.; Kimby, E.; Montoto, S.; Walewski, J.; Pfreundschuh, M.; Federico, M.; Hoskin, P.; McNamara, C.; Caligaris-Cappio, F.; et al. ESMO Guidelines consensus conference on malignant lymphoma 2011 part 1: Diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL). Ann. Oncol. 2013, 24, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Hakiri, S.; Kawaguchi, K.; Fukui, T.; Nakamura, S.; Ozeki, N.; Mori, S.; Goto, M.; Hashimoto, K.; Ito, T.; Yokoi, K. Verification of the diagnostic strategy for anterior mediastinal tumors. Int. J. Clin. Oncol. 2019, 24, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Pala, L.; Giaccone, G.; De Pas, T. Thymic epithelial tumors: From biology to treatment. Cancer Treat. Rev. 2020, 86, 102014. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S. Hitting back at lymphoma: How do modern diagnostics identify high-risk diffuse large B-cell lymphoma subsets and alter treatment? Cancer 2019, 125, 3111–3120. [Google Scholar] [CrossRef] [Green Version]
- Tomiyama, N.; Honda, O.; Tsubamoto, M.; Inoue, A.; Sumikawa, H.; Kuriyama, K.; Kusumoto, M.; Johkoh, T.; Nakamura, H. Anterior mediastinal tumors: Diagnostic accuracy of CT and MRI. Eur. J. Radiol. 2009, 69, 280–288. [Google Scholar] [CrossRef]
- Priola, A.M.; Gned, D.; Veltri, A.; Priola, S.M. Chemical shift and diffusion-weighted magnetic resonance imaging of the anterior mediastinum in oncology: Current clinical applications in qualitative and quantitative assessment. Crit. Rev. Oncol. 2016, 98, 335–357. [Google Scholar] [CrossRef]
- Broncano, J.; Alvarado-Benavides, A.M.; Bhalla, S.; Álvarez-Kindelan, A.; Raptis, C.A.; Luna, A. Role of advanced magnetic resonance imaging in the assessment of malignancies of the mediastinum. World J. Radiol. 2019, 11, 27–45. [Google Scholar] [CrossRef]
- Ippolito, D.; Drago, S.G.; Pecorelli, A.; Maino, C.; Querques, G.; Mariani, I.; Franzesi, C.T.; Sironi, S. Role of dynamic perfusion magnetic resonance imaging in patients with local advanced rectal cancer. World J. Gastroenterol. 2020, 26, 2657–2668. [Google Scholar] [CrossRef]
- Kannan, P.; Kretzschmar, W.W.; Winter, H.; Warren, D.R.; Bates, R.; Allen, D.; Syed, N.; Irving, B.; Papiez, B.W.; Kaeppler, J.; et al. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clin. Cancer Res. 2018, 24, 4694–4704. [Google Scholar] [CrossRef] [Green Version]
- Gordon, Y.; Partovi, S.; Müller-Eschner, M.; Amarteifio, E.; Baeuerle, T.; Weber, M.-A.; Kauczor, H.-U.; Rengier, F. Dynamic contrast-enhanced magnetic resonance imaging: Fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc. Diagn. Ther. 2014, 4, 147–164. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, M.; Aggarwal, N.; Sharma, S.; Sarkar, M.; Singh, B.; Sharma, N. Role of Various DW MRI and DCE MRI Parameters as Predictors of Malignancy in Solid Pulmonary Lesions. Can. Assoc. Radiol. J. 2021, 72, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satta, S.; Dolciami, M.; Celli, V.; Di Stadio, F.; Perniola, G.; Palaia, I.; Pernazza, A.; Della Rocca, C.; Rizzo, S.; Catalano, C.; et al. Quantitative diffusion and perfusion MRI in the evaluation of endometrial cancer: Validation with histopathological parameters. Br. J. Radiol. 2021, 94, 20210054. [Google Scholar] [CrossRef] [PubMed]
- Hatzoglou, V.; Tisnado, J.; Mehta, A.; Peck, K.K.; Daras, M.; Omuro, A.M.; Beal, K.; Holodny, A. Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases. Cancer Med. 2017, 6, 761–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Xue, L.; Zhong, Y.; Wu, Y.-L.; Zhang, W.; Yu, T.-F. Feasibility of using dynamic contrast-enhanced MRI for differentiating thymic carcinoma from thymic lymphoma based on semi-quantitative and quantitative models. Clin. Radiol. 2020, 75, 560.e19–560.e25. [Google Scholar] [CrossRef]
- Chougar, L.; Pyatigorskaya, N.; Lehéricy, S. Update on neuroimaging for categorization of Parkinson’s disease and atypical parkinsonism. Curr. Opin. Neurol. 2021, 34, 514–524. [Google Scholar] [CrossRef]
- Park, Y.-J.; Choi, D.; Choi, J.Y.; Hyun, S.H. Performance Evaluation of a Deep Learning System for Differential Diagnosis of Lung Cancer with Conventional CT and FDG PET/CT Using Transfer Learning and Metadata. Clin. Nucl. Med. 2021, 46, 635–640. [Google Scholar] [CrossRef]
- Romeo, V.; Cuocolo, R.; Apolito, R.; Stanzione, A.; Ventimiglia, A.; Vitale, A.; Verde, F.; Accurso, A.; Amitrano, M.; Insabato, L.; et al. Clinical value of radiomics and machine learning in breast ultrasound: A multicenter study for differential diagnosis of benign and malignant lesions. Eur. Radiol. 2021, 31, 9511–9519. [Google Scholar] [CrossRef]
- Vera Cruz, G.; Bucourt, E.; Réveillère, C.; Martaillé, V.; Joncker-Vannier, I.; Goupille, P.; Mulleman, D.; Courtois, R. Machine learning reveals the most important psychological and social variables predicting the differential diagnosis of rheumatic and musculoskeletal diseases. Rheumatol. Int. 2021. [Google Scholar] [CrossRef]
- Pevy, N.; Christensen, H.; Walker, T.; Reuber, M. Feasibility of using an automated analysis of formulation effort in patients’ spoken seizure descriptions in the differential diagnosis of epileptic and nonepileptic seizures. Seizure 2021, 91, 141–145. [Google Scholar] [CrossRef]
- Mentis, A.-F.; Garcia, I.; Jiménez, J.; Paparoupa, M.; Xirogianni, A.; Papandreou, A.; Tzanakaki, G. Artificial Intelligence in Differential Diagnostics of Meningitis: A Nationwide Study. Diagnostics 2021, 11, 602. [Google Scholar] [CrossRef]
- Loyola-González, O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses from a Practical Point of View. IEEE Access 2019, 7, 154096–154113. [Google Scholar] [CrossRef]
- Affenzeller, M.; Burlacu, B.; Dorfer, V.; Dorl, S.; Halmerbauer, G.; Königswieser, T.; Kommenda, M.; Vetter, J.; Winkler, S. White Box vs. Black Box Modeling: On the Performance of Deep Learning, Random Forests, and Symbolic Regression in Solving Regression Problems. In Proceedings of the Computer Aided Systems Theory—EUROCAST 2019: 17th International Conference, Las Palmas de Gran Canaria, Spain, 17–22 February 2019. Revised Selected Papers, Part I. [Google Scholar]
- Yabuuchi, H.; Matsuo, Y.; Abe, K.; Baba, S.; Sunami, S.; Kamitani, T.; Yonezawa, M.; Yamasaki, Y.; Kawanami, S.; Nagao, M.; et al. Anterior mediastinal solid tumours in adults: Characterisation using dynamic contrast-enhanced MRI, diffusion-weighted MRI, and FDG-PET/CT. Clin. Radiol. 2015, 70, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Al-Kzayer, L.; Xie, X.; Fan, H.; Sarsam, S.N.; Nakazawa, Y.; Chen, L. Mediastinal lesions across the age spectrum: A clinicopathological comparison between pediatric and adult patients. Oncotarget 2017, 8, 59845–59853. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Y.; Akin, O.; Hricak, H. Dynamic contrast-enhanced magnetic resonance imaging of prostate cancer: A review of current methods and applications. World J. Radiol. 2017, 9, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Ried, M.; Marx, A.; Götz, A.; Hamer, O.; Schalke, B.; Hofmann, H.S. State of the art: Diagnostic tools and innovative therapies for treatment of advanced thymoma and thymic carcinoma. Eur. J. Cardio-Thorac. Surg. 2016, 49, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, H.S.; Kang, B.J.; Song, B.J.; Kim, H.-B.; Lee, H.; Jin, M.-S.; Lee, A. Dynamic Contrast-Enhanced MRI Perfusion Parameters as Imaging Biomarkers of Angiogenesis. PLoS ONE 2016, 11, e0168632. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.R.; Kim, H.W.; Kim, H.S. Evaluating the Relationship Between Dynamic Contrast-Enhanced MRI (DCE-MRI) Parameters and Pathological Characteristics in Breast Cancer. J. Magn. Reson. Imaging 2020, 52, 1360–1373. [Google Scholar] [CrossRef]
- Yeo, D.-M.; Oh, S.N.; Jung, C.-K.; Lee, M.A.; Oh, S.T.; Rha, S.E.; Jung, S.E.; Byun, J.Y.; Gall, P.; Son, Y. Correlation of dynamic contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: Preliminary results. J. Magn. Reson. Imaging 2015, 41, 474–480. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, J.W.; Park, K.; Ahn, M.-J.; Moon, J.W.; Ham, S.-Y.; Yi, C.A. Dynamic contrast-enhanced MRI for response evaluation of non-small cell lung cancer in therapy with epidermal growth factor receptor tyrosine kinase inhibitors: A pilot study. Ann. Palliat. Med. 2021, 10, 1589–1598. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Lee, K.S.; Kim, J.; Shim, Y.M.; Han, J.; Kwon, O.J. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am. J. Roentgenol. 2004, 183, 283–289. [Google Scholar] [CrossRef]
- Kayi Cangir, A.; Orhan, K.; Kahya, Y.; Özakıncı, H.; Kazak, B.B.; Konuk Balcı, B.M.; Karasoy, D.; Uzun, Ç. CT imaging-based machine learning model: A potential modality for predicting low-risk and high-risk groups of thymoma: “Impact of surgical modality choice”. World J. Surg. Oncol. 2021, 19, 147. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, Y.; Li, M.; Liu, Y.; Wang, F.; Weng, Q.; You, R.; Cao, D. Machine-learning-based computed tomography radiomic analysis for histologic subtype classification of thymic epithelial tumours. Eur. J. Radiol. 2020, 126, 108929. [Google Scholar] [CrossRef] [PubMed]
Variables | Number (%) |
---|---|
Sex | |
Male | 28 (45) |
Female | 34 (55) |
Age (yr) | 52.3 ± 15.8 (22 to 82) |
Treatment | |
Surgery | 34 (54.8) |
Chemotherapy | 28 (45.2) |
PMT subtype | |
Lymphoma | 17 (27.4) |
TET | 45 (72.6) |
Lymphoma subtype a | |
Hodgkin | 6 (35.3) |
Non-Hodgkin | 11 (64.7) |
TET subtype b | |
Thymoma | 31 (68.9) |
Thymic carcinoma | 14 (31.1) |
Invasiveness of thymoma c | |
Noninvasive | 25 (80.6) |
Invasive | 6 (19.4) |
Variable | Lymphoma (n = 17) | TET (n = 45) | p Value | Thymoma (n = 31) | Thymic Carcinoma (n = 14) | p Value |
---|---|---|---|---|---|---|
Age (yr) | 30 (26, 48) | 59 (52, 65) | <0.001 *† | 56 (49, 65) | 62 (55, 69) | 0.169 |
Ktrans (10−3 min−1) | 0.34 (0.11, 1.13) | 0.46 (0.22, 0.62) | 0.664 | 0.36 (0.17, 0.58) | 0.51 (0.45, 1.50) | 0.042 * |
Kep (10−3 min−1) | 0.86 (0.67, 1.73) | 1.70 (0.90, 2.96) | 0.073 | 2.72 (1.14, 4.71) | 0.93 (0.72, 1.38) | 0.005 *† |
Vp (10−3) | 0.01 (0.01, 0.03) | 0.02 (0.01, 0.05) | 0.444 | 0.02 (0.01, 0.05) | 0.03 (0.02, 0.07) | 0.086 |
Ve (10−3) | 0.39 (0.13, 1.01) | 0.20 (0.08, 0.54) | 0.253 | 0.13 (0.06, 0.31) | 0.52 (0.20, 2.36) | 0.001 *† |
TTP (× 102 s) | 1.29 (1.05, 1.96) | 1.09 (0.76, 1.75) | 0.087 | 0.89 (0.66, 1.29) | 1.72 (1.01, 1.96) | 0.003 *† |
Max. conc. (10−3 mM) | 32 (18, 47) | 21 (11, 38) | 0.246 | 17 (9, 33) | 31 (16, 70) | 0.062 |
Tumor volume (× 104 mm3) | 4.50 (2.06, 6.37) | 1.21 (0.57, 4.52) | 0.028 * | 1.10 (0.49, 4.40) | 1.60 (0.67, 5.06) | 0.624 |
Surface area (× 104 mm2) | 2.49 (1.55, 3.84) | 0.80 (0.44, 2.78) | 0.027 * | 0.72 (0.42, 2.86) | 1.14 (0.55, 2.80) | 0.573 |
Max. diameter (× 102 mm) | 0.76 (0.65, 1.02) | 0.45 (0.35, 0.71) | 0.001 *† | 0.43 (0.35, 0.72) | 0.51 (0.41, 0.72) | 0.315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Yen, Y.-T.; Huang, L.-T.; Chen, T.-Y.; Liu, Y.-S.; Tang, S.-Y.; Huang, W.-L.; Chen, Y.-Y.; Lai, C.-H.; Fang, Y.-H.D.; et al. An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors. Diagnostics 2022, 12, 889. https://doi.org/10.3390/diagnostics12040889
Lin C-Y, Yen Y-T, Huang L-T, Chen T-Y, Liu Y-S, Tang S-Y, Huang W-L, Chen Y-Y, Lai C-H, Fang Y-HD, et al. An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors. Diagnostics. 2022; 12(4):889. https://doi.org/10.3390/diagnostics12040889
Chicago/Turabian StyleLin, Chia-Ying, Yi-Ting Yen, Li-Ting Huang, Tsai-Yun Chen, Yi-Sheng Liu, Shih-Yao Tang, Wei-Li Huang, Ying-Yuan Chen, Chao-Han Lai, Yu-Hua Dean Fang, and et al. 2022. "An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors" Diagnostics 12, no. 4: 889. https://doi.org/10.3390/diagnostics12040889
APA StyleLin, C.-Y., Yen, Y.-T., Huang, L.-T., Chen, T.-Y., Liu, Y.-S., Tang, S.-Y., Huang, W.-L., Chen, Y.-Y., Lai, C.-H., Fang, Y.-H. D., Chang, C.-C., & Tseng, Y.-L. (2022). An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors. Diagnostics, 12(4), 889. https://doi.org/10.3390/diagnostics12040889