Retinal Vascularization Abnormalities Studied by Optical Coherence Tomography Angiography (OCTA) in Type 2 Diabetic Patients with Moderate Diabetic Retinopathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Protocol
2.3. Statistical Analysis
3. Results
3.1. Vascular Density and Microvascular Changes Studied with OCTA
3.2. Anatomo-Functional Correlation Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ewing, F.M.; Deary, I.J.; Strachan, M.W.; Frier, B.M. Seeing beyond retinopathy in diabetes: Electrophysiological and psychophysical abnormalities and alterations in vision. Endocr. Rev. 1998, 19, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Cheloni, R.; Gandolfi, S.A.; Signorelli, C.; Odone, A. Global prevalence of diabetic retinopathy: Protocol for a systematic review and meta-analysis. BMJ Open 2019, 9, 2015–2019. [Google Scholar] [CrossRef] [PubMed]
- Meleppat, R.K.; Ronning, K.E.; Karlen, S.J.; Burns, M.E.; Pugh, E.N.; Zawadzki, R.J. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci. Rep. 2021, 11, 16252. [Google Scholar] [CrossRef]
- Pinilla, I.; Sanchez-Cano, A.; Insa, G.; Bartolomé, I.; Perdices, L.; Orduna-Hospital, E. Choroidal differences between spectral and swept-source domain technologies. Curr. Eye Res. 2020, 46, 239–247. [Google Scholar] [CrossRef]
- Cuenca, N.; Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Kutsyr, O.; Albertos-Arranz, H.; Fernández-Sánchez, L.; Martínez-Gil, N.; Noailles, A.; López-Garrido, J.A.; López-Gálvez, M.; et al. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog. Retin. Eye Res. 2020, 77, 100828. [Google Scholar] [CrossRef]
- Rocholz, R.; Corvi, F.; Weichsel, J.; Schmidt, S.; Staurenghi, G. High Resolution Imaging in Microscopy and Ophthalmology. In High Resolution Imaging in Microscopy and Ophthalmology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030166380. [Google Scholar]
- Tey, K.Y.; Teo, K.; Tan, A.C.S.; Devarajan, K.; Tan, B.; Tan, J.; Schmetterer, L.; Ang, M. Optical coherence tomography angiography in diabetic retinopathy: A review of current applications. Eye Vis. 2019, 6, 37. [Google Scholar] [CrossRef]
- Tam, J.; Dhamdhere, K.P.; Tiruveedhula, P.; Lujan, B.J.; Johnson, R.N.; Bearse, M.A.J.; Adams, A.J.; Roorda, A. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom. Vis. Sci. 2012, 89, E692–E703. [Google Scholar] [CrossRef]
- Matsunaga, D.R.; Yi, J.J.; De Koo, L.O.; Ameri, H.; Puliafito, C.A.; Kashani, A.H. Optical Coherence Tomography Angiography of Diabetic Retinopathy in Human Subjects. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 796–805. [Google Scholar] [CrossRef]
- Pappuru, R.K.R.; Ribeiro, L.; Lobo, C.; Alves, D.; Cunha-Vaz, J. Microaneurysm turnover is a predictor of diabetic retinopathy progression. Br. J. Ophthalmol. 2019, 103, 222–226. [Google Scholar] [CrossRef]
- Vujosevic, S.; Toma, C.; Villani, E.; Gatti, V.; Brambilla, M.; Muraca, A.; Ponziani, M.C.; Aimaretti, G.; Nuzzo, A.; Nucci, P.; et al. Early Detection of Microvascular Changes in Patients with Diabetes Mellitus without and with Diabetic Retinopathy: Comparison between Different Swept-Source OCT-A Instruments. J. Diabetes Res. 2019, 2019, 2547216. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.M.; Marques, J.P.; Soares, M.; Simão, S.; Melo, P.; Martins, A.; Figueira, J.; Murta, J.N.; Silva, R. Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy: An exploratory analysis. Eye 2019, 33, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Bhanushali, D.; Anegondi, N.; Gadde, S.G.K.; Srinivasan, P.; Chidambara, L.; Yadav, N.K.; Roy, A.S. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kuonen, A.; Bergin, C.; Ambresin, A. Perifoveal capillary changes in diabetic patients and association between severity and type of diabetes, visual acuity, and enlargement of non-flow area in the retinal capillary plexuses. J. Fr. Ophtalmol. 2021, 44, 367–375. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Akil, H.; Pfau, M.; Sadda, S.R. Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2016, 57, 3907–3913. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology 1991, 98, 823–833. [Google Scholar] [CrossRef]
- Lupidi, M.; Coscas, G.; Coscas, F.; Fiore, T.; Spaccini, E.; Fruttini, D.; Cagini, C. Retinal Microvasculature in Nonproliferative Diabetic Retinopathy: Automated Quantitative Optical Coherence Tomography Angiography Assessment. Ophthalmic Res. 2017, 58, 131–141. [Google Scholar] [CrossRef]
- Johannesen, S.K.; Viken, J.N.; Vergmann, A.S.; Grauslund, J. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: A systematic review. Acta Ophthalmol. 2019, 97, 7–14. [Google Scholar] [CrossRef]
- Falavarjani, K.G.; Shenazandi, H.; Naseri, D.; Anvari, P.; Kazemi, P.; Aghamohammadi, F.; Alissmail, F.; Alemzadeh, S.A. Foveal Avascular Zone and Vessel Density in Healthy Subjects: An Optical Coherence Tomography Angiography Study. J. Ophthalmic Vis. Res. 2018, 13, 260–265. [Google Scholar] [CrossRef]
- Vieira-Potter, V.J.; Karamichos, D.; Lee, D.J. Ocular Complications of Diabetes and Therapeutic Approaches. BioMed Res. Int. 2016, 2016, 3801570. [Google Scholar] [CrossRef]
- Khadamy, J.; Abri Aghdam, K.; Falavarjani, K. An update on optical coherence tomography angiography in diabetic retinopathy. J. Ophthalmic Vis. Res. 2018, 13, 487–497. [Google Scholar] [PubMed]
- Sanchez-Cano, A.; Orduna, E.; Segura, F.; Lopez, C.; Cuenca, N.; Abecia, E.; Pinilla, I. Choroidal thickness and volume in healthy young white adults and the relationships between them and axial length, ammetropy and sex. Am. J. Ophthalmol. 2014, 158, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jiang, C.; Wang, X.; Zhu, L.; Gu, R.; Xu, H.; Jia, Y.; Huang, D.; Sun, X. Macular perfusion in healthy Chinese: An optical coherence tomography angiogram study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3212–3217. [Google Scholar] [CrossRef] [PubMed]
- Coscas, F.; Sellam, A.; Glacet-Bernard, A.; Jung, C.; Goudot, M.; Miere, A.; Souied, E.H. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. InvestIG. Ophthalmol. Vis. Sci. 2016, 57, OCT211–OCT223. [Google Scholar] [CrossRef] [PubMed]
- Iafe, N.A.; Phasukkijwatana, N.; Chen, X.; Sarraf, D. Retinal capillary density and foveal avascular zone area are age-dependent: Quantitative analysis using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5780–5787. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.S.; Lim, L.W.; Chow, V.S.; Chay, I.W.; Tan, S.; Cheong, K.X.; Tan, G.T.; Sadda, S.V.R. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT224–OCT234. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, F.; Fadakar, K.; Berijani, S.; Babeli, A.; Gholizadeh, A.; Sabour, S. Quantitative assessment of vascular density in diabetic retinopathy subtypes with optical coherence tomography angiography. BMC Ophthalmol. 2021, 21, 82. [Google Scholar] [CrossRef]
- Abreu-Gonzalez, R.; Diaz-Rodriguez, R.; Rubio-Rodriguez, G.; Gil-Hernandez, M.A.; Abreu-Reyes, P. Macular vascular flow area and vascular density in healthy population using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6713. [Google Scholar] [CrossRef][Green Version]
- Zhu, T.; Ma, J.; Li, Y.; Zhang, Z. Association between retinal neuronal degeneration and visual function impairment in type 2 diabetic patients without diabetic retinopathy. Sci. China Life Sci. 2015, 58, 550–555. [Google Scholar] [CrossRef]
- Hirai, F.E.; Tielsch, J.M.; Klein, B.E.K.; Klein, R. Ten-year change in vision-related quality of life in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 2011, 118, 353–358. [Google Scholar] [CrossRef]
- Orduna-Hospital, E.; Sanchez-Cano, A.; Perdices, L.; Acha, J.; López Alaminos, E.M.; Pinilla, I. Changes in retinal layers in type 1 diabetes mellitus without retinopathy measured by spectral domain and swept source OCTs. Sci. Rep. 2021, 11, 10427. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, H.W.; Kok, P.H.; Garvin, M.; Sonka, M.; Devries, J.H.; Michels, R.P.; van Velthoven, M.E.; Schlingemann, R.O.; Verbraak, F.D.; Abramoff, M.D. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
- Sokol, S.; Moskowitz, A.; Skarf, B.; Evans, R.; Molitch, M.; Senior, B. Contrast Sensitivity in Diabetics With and Without Background Retinopathy. Arch. Ophthalmol. 1985, 103, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Ismail, G.M.; Whitaker, D. Early detection of changes in visual function in diabetes mellitus. Ophthalmic Physiol. Opt. 1998, 18, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Forte, R.; Haulani, H.; Jürgens, I. quantitative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: A prospective pilot study. Retina 2020, 40, 333–344. [Google Scholar] [CrossRef]
- Alam, M.; Zhang, Y.; Lim, J.I.; Chan, R.V.P.; Yang, M.; Yao, X. Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy. Retina 2020, 40, 322–332. [Google Scholar] [CrossRef]
- Nesper, P.L.; Roberts, P.K.; Onishi, A.C.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO307–BIO315. [Google Scholar] [CrossRef]
- Dimitrova, G.; Chihara, E.; Takahashi, H.; Amano, H.; Okazaki, K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 190–196. [Google Scholar] [CrossRef]
- Ong, J.X.; Kwan, C.C.; Cicinelli, M.V.; Fawzi, A.A. Superficial capillary perfusion on optical coherence tomography angiography differentiates moderate and severe nonproliferative diabetic retinopathy. PLoS ONE 2020, 15, e0240064. [Google Scholar] [CrossRef]
- Durbin, M.K.; An, L.; Shemonski, N.D.; Soares, M.; Santos, T.; Lopes, M.; Neves, C.; Cunha-Vaz, J. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017, 135, 370–376. [Google Scholar] [CrossRef]
- Fryczkowski, A.W.; Sato, S.E.; Hodes, B.L. Changes in the diabetic choroidal vasculature: Scanning electron microscopy findings. Ann. Ophthalmol. 1988, 20, 299–305. [Google Scholar] [PubMed]
- Fryczkowski, A.W.; Hodes, B.L.; Walker, J. Diabetic choroidal and iris vasculature scanning electron microscopy findings. Int. Ophthalmol. 1989, 13, 269–279. [Google Scholar] [CrossRef]
- Cao, J.; McLeod, D.S.; Merges, C.A.; Lutty, G.A. Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch. Ophthalmol. (Chic. Ill. 1960) 1998, 116, 589–597. [Google Scholar] [CrossRef]
- Hua, R.; Liu, L.; Wang, X.; Chen, L. Imaging evidence of diabetic choroidopathy in vivo: Angiographic pathoanatomy and choroidal-enhanced depth imaging. PLoS ONE 2013, 8, e83494. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Brewer, E.; Waheed, N.K.; Duker, J.S. Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography. JAMA Ophthalmol. 2013, 131, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Melancia, D.; Vicente, A.; Cunha, J.P.; Abegão Pinto, L.; Ferreira, J. Diabetic choroidopathy: A review of the current literature. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Ashour, D.M.; El-Shazly, A.A.E.-F.; Abdelgawad, R.H.A.; Saleh, M.I. Choroidal thickness in relation to urinary albumin excretion rate in type 2 diabetes mellitus without retinopathy. Int. J. Retin. Vitr. 2021, 7, 61. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, H.; Zhang, Q.; Chu, Z.; Olmos de Koo, L.C.; Chao, J.R.; Rezaei, K.A.; Saraf, S.S.; Wang, R.K. Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: A swept-source optical coherence tomography angiography study. PLoS ONE 2020, 15, e0243830. [Google Scholar] [CrossRef]
- De Carlo, T.E.; Chin, A.T.; Bonini Filho, M.A.; Adhi, M.; Branchini, L.; Salz, D.A.; Baumal, C.R.; Crawford, C.; Reichel, E.; Witkin, A.J.; et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 2015, 35, 2364–2370. [Google Scholar] [CrossRef]
- Takase, N.; Nozaki, M.; Kato, A.; Ozeki, H.; Yoshida, M.; Ogura, Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015, 35, 2377–2383. [Google Scholar] [CrossRef]
- Di, G.; Weihong, Y.; Xiao, Z.; Zhikun, Y.; Xuan, Z.; Yi, Q.; Fangtian, D. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Couturier, A.; Mané, V.; Bonnin, S.; Erginay, A.; Massin, P.; Gaudric, A.; Tadayoni, R. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 2015, 35, 2384–2391. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Zhang, M.; Bhavsar, K.; Zhang, X.; Campbell, J.P.; Lin, P.; Bailey, S.; Flaxel, C.; Laurer, A.; Wilson, D.; et al. Visualization of 3 Distinct Retinal Plexusses by Projection-Resolved Optical Coherence Tomogaphy Angiography in Diabetic Retinopathy. JAMA Ophthalmol. 2018, 134, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Tan, Y.; Liu, S.; Xie, Y.; Shuai, S.; Wang, W.; Huang, W. Macular vessel density in diabetes and diabetic retinopathy with swept-source optical coherence tomography angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. Albr. Graefes Arch. Klin. Exp. Ophthalmol. 2020, 258, 2671–2679. [Google Scholar] [CrossRef]
- Lavia, C.; Feldman-Billard, S.; Erginay, A.; Guérin, O.; Virgili, G.; Gaudric, A.; Tadayoni, R.; Dupas, B. Rapid macular capillary loss in patients with uncontrolled type 1 diabetes. Retina 2020, 40, 1053–1061. [Google Scholar] [CrossRef]
- Ciloglu, E.; Unal, F.; Sukgen, E.A.; Koçluk, Y. Evaluation of Foveal Avascular Zone and Capillary Plexuses in Diabetic Patients by Optical Coherence Tomography Angiography. Korean J. Ophthalmol. 2019, 33, 359. [Google Scholar] [CrossRef]
- Tang, F.Y.; Chan, E.O.; Sun, Z.; Wong, R.; Lok, J.; Szeto, S.; Chan, J.C.; Lam, A.; Tham, C.C.; Ng, D.S.; et al. Clinically relevant factors associated with quantitative optical coherence tomography angiography metrics in deep capillary plexus in patients with diabetes. Eye Vis. 2020, 7, 7. [Google Scholar] [CrossRef]
- Boned-Murillo, A.; Albertos-Arranz, H.; Diaz-Barreda, M.D.; Orduna-Hospital, E.; Sánchez-Cano, A.; Ferreras, A.; Cuenca, N.; Pinilla, I. Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines 2022, 10, 88. [Google Scholar] [CrossRef]
- Xiong, H.; You, Q.S.; Guo, Y.; Wang, J.; Wang, B.; Gao, L.; Flaxel, C.J.; Bailey, S.T.; Hwang, T.S.; Jia, Y. Deep learning-based signal-independent assessment of macular avascular area on 6 × 6 mm optical coherence tomography angiogram in diabetic retinopathy: A comparison to instrument-embedded software. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Nazir, T.; Irtaza, A.; Shabbir, Z.; Javed, A.; Akram, U.; Mahmood, M.T. Diabetic retinopathy detection through novel tetragonal local octa patterns and extreme learning machines. Artif. Intell. Med. 2019, 99, 101695. [Google Scholar] [CrossRef]
DM2 Group (n = 54) | Mean | SD |
---|---|---|
Disease duration (years) | 2.50 | 2.88 |
HbA1c (%) | 7.58 | 1.30 |
Total cholesterol total (mg/dL) | 148.04 | 33.18 |
HDL cholesterol HDL (mg/dL) | 47.83 | 15.21 |
LDL cholesterol LDL (mg/dL) | 71.47 | 23.10 |
TG (mg/dL) | 122.24 | 51.71 |
GF (CKD-EPI) (mL/min/1.73) | 73.57 | 20.52 |
Creatinine (mg/dL) | 1.05 | 0.50 |
Control Group (n = 73) | DM2 Group (n = 54) | p | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
BCVA (LogMAR) | 0.04 | 0.05 | 0.10 | 0.12 | 0.001 |
SE (D) | 0.04 | 1.58 | 0.37 | 1.70 | 0.110 |
AL (mm) | 24.00 | 2.80 | 23.23 | 0.84 | 0.075 |
IOP (mmHg) | 15.30 | 2.90 | 14.76 | 2.49 | 0.676 |
FAZ Area (μm2) | |||||
---|---|---|---|---|---|
Control Group | DM2 Group | p | |||
Mean | SD | Mean | SD | ||
SCP | 242.37 | 85.36 | 333.59 | 161.03 | <0.0001 |
DCP | 278.85 | 103.25 | 307.18 | 141.16 | 0.301 |
Anatomical Alterations in NPDR DM2 Patients | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peripheral Disruption SCP | Dilatation SCP | MA SCP | IRMAs SCP | Flow Changes SCP | Peripheral Disruption DCP | Dilatation DCP | MA DCP | IRMAs DCP | Flow Changes DCP | Lack of CC Perfusion | |
Age | −0.082 (0.558) | −0.027 (0.847) | 0.081 (0.565) | −0.162 (0.246) | 0.080 (0.571) | −0.043 (0.762) | 0.286 * (0.038) | −0.122 (0.386) | −0.182 (0.193) | 0.096 (0.493) | 0.251 (0.070) |
Duration DM2 | 0.094 (0.500) | 0.113 (0.417) | 0.010 (0.945) | 0.130 (0.349) | 0.202 (0.143) | −0.092 (0.506) | 0.254 (0.064) | −0.021 (0.881) | −0.056 (0.686) | −0.025 (0.858) | −0.075 (0.590) |
HbA1C% | −0.008 (0.954) | 0.111 (0.425) | −0.064 (0.648) | 0.138 (0.318) | −0.040 (0.772) | 0.042 (0.764) | −0.186 (0.178) | 0.066 (0.633) | −0.052 (0.710) | −0.155 (0.264) | −0.052 (0.708) |
Cholesterol | 0.059 (0.672) | −0.092 (0.510) | −0.084 (0.545) | −0.236 (0.086) | −0.189 (0.171) | 0.022 (0.874) | 0.020 (0.886) | 0.133 (0.338) | 0.084 (0.545) | −0.240 (0.080) | −0.121 (0.384) |
HDL | 0.067 (0.630) | −0.241 (0.080) | −0.155 (0.263) | −0.308 * (0.024) | −0.415 ** (0.002) | −0.076 (0.583) | −0.176 (0.203) | −0.096 (0.490) | −0.015 (0.916) | −0.078 (0.575) | −0.225 (0.102) |
LDL | −0.033 (0.810) | −0.020 (0.885) | −0.072 (0.603) | −0.248 (0.071) | −0.262 (0.055) | 0.009 (0.951) | −0.044 (0.750) | 0.198 (0.152) | 0.046 (0.743) | −0.219 (0.112) | −0.106 (0.447) |
TG | −0.217 (0.115) | 0.104 (0.456) | 0.254 (0.064) | 0.181 (0.190) | 0.077 (0.580) | 0.108 (0.436) | 0.159 (0.252) | 0.080 (0.567) | 0.108 (0.438) | −0.047 (0.733) | 0.008 (0.956) |
GF | 0.198 (0.152) | 0.080 (0.563) | 0.117 (0.401) | 0.200 (0.148) | 0.018 (0.895) | −0.037 (0.790) | −0.061 (0.661) | 0.238 (0.083) | 0.258 (0.060) | −0.275 * (0.044) | −0.328 * (0.015) |
Creatine | −0.097 (0.484) | −0.007 (0.959) | −0.123 (0.377) | −0.107 (0.440) | 0.098 (0.479) | 0.103 (0.457) | 0.034 (0.805) | −0.227 (0.098) | −0.205 (0.137) | 0.271 * (0.048) | 0.305 * (0.025) |
VA (LogMAR) | −0.051 (0.716) | −0.111 (0.426) | −0.220 (0.110) | −0.076 (0.587) | −0.065 (0.639) | −0.017 (0.903) | 0.009 (0.948) | −0.027 (0.849) | −0.039 (0.779) | −0.094 (0.500) | 0.165 (0.233) |
SE (D) | −0.053 (0.704) | 0.140 (0.314) | −0.033 (0.815) | −0.051 (0.712) | −0.134 (0.333) | −0.200 (0.147) | −0.142 (0.305) | −0.135 (0.331) | 0.030 (0.832) | 0.214 (0.121) | −0.003 (0.982) |
AL (mm) | 0.115 (0.408) | −0.180 (0.194) | 0.089 (0.524) | −0.054 (0.700) | 0.421 ** (0.002) | 0.073 (0.602) | −0.014 (0.918) | 0.136 (0.328) | 0.199 (0.149) | 0.144 (0.300) | 0.024 (0.861) |
IOP (mmHg) | −0.003 (0.982) | 0.112 (0.421) | 0.039 (0.781) | −0.218 (0.113) | −0.149 (0.282) | −0.090 (0.520) | 0.092 (0.506) | −0.172 (0.215) | 0.015 (0.915) | −0.186 (0.179) | −0.315 * (0.020) |
Anatomical Alterations in NPDR DM2 Patients | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peripheral Disruption SCP | Dilatation SCP | MA SCP | IRMAs SCP | Flow Changes SCP | Peripheral Disruption DCP | Dilatation DCP | MA DCP | IRMAs DCP | Flow Changes DCP | Lack of CC Perfusion | |
SCP | |||||||||||
C | 0.018 (0.900) | 0.033 (0.811) | 0.199 (0.149) | −0.113 (0.415) | −0.048 (0.731) | 0.212 (0.125) | −0.054 (0.697) | 0.081 (0.560) | 0.136 (0.328) | 0.052 (0.709) | 0.101 (0.468) |
S | 0.172 (0.213) | −0.260 (0.057) | −0.155 (0.263) | −0.318 * (0.019) | −0.130 (0.350) | −0.148 (0.287) | 0.101 (0.465) | −0.223 (0.105) | −0.103 (0.457) | 0.000 (1.000) | −0.217 (0.115) |
T | −0.091 (0.513) | 0.002 (0.986) | 0.117 (0.401) | −0.135 (0.332) | −0.272 * (0.046) | −0.076 (0.584) | 0.049 (0.727) | −0.155 (0.263) | −0.043 (0.759) | 0.064 (0.644) | 0.021 (0.878) |
N | 0.014 (0.918) | −0.112 (0.421) | 0.024 ± 0.865 | −0.166 (0.231) | −0.212 (0.124) | −0.074 (0.596) | −0.170 (0.219) | −0.060 (0.664) | −0.056 (0.687) | −0.014 (0.921) | 0.185 (0.180) |
I | 0.081 (0.559) | −0.026 (0.851) | 0.007 ± 0.958 | −0.139 (0.315) | 0.018 (0.899) | −0.042 (0.764) | 0.123 (0.376) | −0.040 (0.775) | −0.235 (0.088) | 0.113 (0.415) | 0.084 (0.545) |
FAZ | 0.002 (0.991) | 0.221 (0.108) | −0.040 (0.775) | 0.142 (0.306) | 0.058 (0.677) | −0.093 (0.501) | 0.003 (0.984) | −0.013 (0.924) | −0.009 (0.949) | 0.107 (0.441) | 0.037 (0.792) |
DCP | |||||||||||
C | −0.010 (0.944) | −0.035 (0.806) | 0.131 (0.351) | −0.285 * (0.039) | −0.172 (0.218) | 0.008 (0.957) | −0.068 (0.630) | 0.079 (0.574) | −0.002 (0.991) | −0.195 (0.161) | 0.142 (0.311) |
S | 0.143 (0.301) | −0.284 * (0.037) | −0.168 (0.224) | −0.193 (0.162) | −0.200 (0.146) | −0.204 (0.139) | −0.033 (0.813) | −0.108 (0.438) | 0.062 (0.656) | −0.167 (0.228) | −0.026 (0.852) |
T | −0.180 (0.192) | 0.243 (0.077) | −0.058 (0.679) | 0.035 (0.804) | −0.290 * (0.034) | −0.155 (0.263) | 0.020 (0.886) | −0.031 (0.824) | −0.019 (0.891) | −0.199 (0.150) | 0.141 (0.310) |
N | −0.126 (0.364) | −0.065 (0.638) | 0.037 (0.791) | −0.127 (0.358) | −0.348 ** (0.010) | −0.207 (0.134) | −0.016 (0.910) | 0.041 (0.767) | −0.090 (0.518) | −0.382 ** (0.004) | 0.073 (0.598) |
I | 0.069 (0.622) | 0.078 (0.573) | −0.162 (0.241) | −0.074 (0.596) | −0.103 (0.457) | −0.044 (0.750) | 0.049 (0.727) | 0.000 (1.000) | −0.208 (0.131) | 0.156 (0.260) | 0.127 (0.360) |
FAZ | −0.069 (0.622) | −0.045 (0.746) | −0.205 (0.137) | 0.030 (0.831) | 0.149 (0.283) | −0.042 (0.764) | −0.069 (0.622) | −0.205 (0.137) | 0.046 (0.743) | 0.229 (0.095) | 0.049 (0.725) |
CC | |||||||||||
C | 0.065 (0.639) | 0.102 (0.462) | −0.074 (0.596) | 0.018 (0.898) | −0.151 (0.275) | 0.197 (0.154) | −0.157 (0.256) | 0.058 (0.679) | 0.173 (0.212) | 0.021 (0.878) | −0.349 ** (0.010) |
S | 0.118 (0.396) | 0.114 (0.411) | −0.090 (0.518) | 0.139 (0.315) | 0.165 (0.233) | 0.140 (0.312) | 0.100 (0.472) | −0.010 ± 0.941 | −0.068 ± 0.626 | 0.179 ± 0.195 | −0.116 (0.403) |
T | −0.086 (0.536) | 0.170 (0.219) | 0.128 (0.355) | −0.046 (0.739) | −0.377 ** (0.005) | 0.278 * (0.042) | −0.252 (0.067) | 0.226 ± 0.101 | 0.077 ± 0.581 | −0.145 ± 0.295 | −0.177 (0.199) |
N | −0.018 (0.900) | −0.100 (0.472) | −0.193 (0.162) | −0.244 (0.075) | −0.237 (0.085) | 0.108 (0.436) | −0.300 * (0.027) | 0.034 ± 0.808 | −0.072 ± 0.603 | 0.037 ± 0.792 | −0.309 * (0.023) |
I | 0.171 (0.218) | −0.064 (0.645) | −0.075 (0.589) | −0.087 (0.532) | 0.197 (0.154) | 0.032 (0.818) | −0.089 (0.524) | 0.031 ± 0.824 | −0.264 ± 0.054 | 0.162 ± 0.242 | −0.080 (0.568) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Espinosa, G.; Boned-Murillo, A.; Orduna-Hospital, E.; Díaz-Barreda, M.D.; Sánchez-Cano, A.; Bielsa-Alonso, S.; Acha, J.; Pinilla, I. Retinal Vascularization Abnormalities Studied by Optical Coherence Tomography Angiography (OCTA) in Type 2 Diabetic Patients with Moderate Diabetic Retinopathy. Diagnostics 2022, 12, 379. https://doi.org/10.3390/diagnostics12020379
Fernández-Espinosa G, Boned-Murillo A, Orduna-Hospital E, Díaz-Barreda MD, Sánchez-Cano A, Bielsa-Alonso S, Acha J, Pinilla I. Retinal Vascularization Abnormalities Studied by Optical Coherence Tomography Angiography (OCTA) in Type 2 Diabetic Patients with Moderate Diabetic Retinopathy. Diagnostics. 2022; 12(2):379. https://doi.org/10.3390/diagnostics12020379
Chicago/Turabian StyleFernández-Espinosa, Guisela, Ana Boned-Murillo, Elvira Orduna-Hospital, María Dolores Díaz-Barreda, Ana Sánchez-Cano, Sofía Bielsa-Alonso, Javier Acha, and Isabel Pinilla. 2022. "Retinal Vascularization Abnormalities Studied by Optical Coherence Tomography Angiography (OCTA) in Type 2 Diabetic Patients with Moderate Diabetic Retinopathy" Diagnostics 12, no. 2: 379. https://doi.org/10.3390/diagnostics12020379
APA StyleFernández-Espinosa, G., Boned-Murillo, A., Orduna-Hospital, E., Díaz-Barreda, M. D., Sánchez-Cano, A., Bielsa-Alonso, S., Acha, J., & Pinilla, I. (2022). Retinal Vascularization Abnormalities Studied by Optical Coherence Tomography Angiography (OCTA) in Type 2 Diabetic Patients with Moderate Diabetic Retinopathy. Diagnostics, 12(2), 379. https://doi.org/10.3390/diagnostics12020379