Somatosensory and Gustatory Profiling in the Orofacial Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Materials
2.2.1. Materials for QST
2.2.2. Materials for Taste Measurement
2.3. Methods
2.3.1. Preliminary Examinations
2.3.2. Thermal Testing
Cold Detection Threshold (CDT)
Warm Detection Threshold (WDT)
Thermal Sensory Limen (TSL) and Paradoxical Heat Sensation (PHS)
Cold Pain Threshold (CPT)
Heat Pain Threshold (HPT)
2.3.3. Mechanical Testing
Mechanical Detection Threshold (MDT)
Mechanical Pain Threshold (MPT)
Mechanical Pain Sensitivity (MPS) and Dynamic Mechanical Allodynia (DMA)
Wind-Up Ratio (WUR)
2.3.4. Principle of Taste Testing
2.4. Statistical Analysis
2.4.1. QST Data
2.4.2. Evaluation of Taste Data
3. Results
3.1. Patients
3.2. QST
3.2.1. Thermal Thresholds
3.2.2. Mechanical Thresholds
3.3. Taste
4. Discussion
4.1. QST
4.2. Taste
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartmann, A.; Seeberger, R.; Bittner, M.; Rolke, R.; Welte-Jzyk, C.; Daublander, M. Profiling intraoral neuropathic disturbances following lingual nerve injury and in burning mouth syndrome. BMC Oral. Health 2017, 17, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolke, R.; Baron, R.; Maier, C.; Tolle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Botefur, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Yekta, S.S.; Smeets, R.; Stein, J.M.; Ellrich, J. Assessment of trigeminal nerve functions by quantitative sensory testing in patients and healthy volunteers. J. Oral. Maxillofac. Surg. 2010, 68, 2437–2451. [Google Scholar] [CrossRef]
- Rolke, R.; Magerl, W.; Campbell, K.A.; Schalber, C.; Caspari, S.; Birklein, F.; Treede, R.D. Quantitative sensory testing: A comprehensive protocol for clinical trials. Eur. J. Pain 2006, 10, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Said-Yekta, S.; Smeets, R.; Esteves-Oliveira, M.; Stein, J.M.; Riediger, D.; Lampert, F. Verification of nerve integrity after surgical intervention using quantitative sensory testing. J. Oral. Maxillofac. Surg. 2012, 70, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cruccu, G.; Anand, P.; Attal, N.; Garcia-Larrea, L.; Haanpaa, M.; Jorum, E.; Serra, J.; Jensen, T.S. EFNS guidelines on neuropathic pain assessment. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2004, 11, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renton, T.; Thexton, A.; Crean, S.J.; Hankins, M. Simplifying the assessment of the recovery from surgical injury to the lingual nerve. Br. Dent. J. 2006, 200, 569–573; discussion 565. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.; Maier, C.; Attal, N.; Binder, A.; Bouhassira, D.; Cruccu, G.; Finnerup, N.B.; Haanpaa, M.; Hansson, P.; Hullemann, P.; et al. Peripheral neuropathic pain: A mechanism-related organizing principle based on sensory profiles. Pain 2017, 158, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Pigg, M.; Svensson, P.; List, T. Orofacial thermal thresholds: Time-dependent variability and influence of spatial summation and test site. J. Orofac. Pain 2011, 25, 39–48. [Google Scholar]
- Svensson, P.; Baad-Hansen, L.; Pigg, M.; List, T.; Eliav, E.; Ettlin, D.; Michelotti, A.; Tsukiyama, Y.; Matsuka, Y.; Jaaskelainen, S.K.; et al. Guidelines and recommendations for assessment of somatosensory function in oro-facial pain conditions—A taskforce report. J. Oral. Rehabil. 2011, 38, 366–394. [Google Scholar] [CrossRef] [Green Version]
- Van der Cruyssen, F.; Van Tieghem, L.; Croonenborghs, T.M.; Baad-Hansen, L.; Svensson, P.; Renton, T.; Jacobs, R.; Politis, C.; De Laat, A. Orofacial quantitative sensory testing: Current evidence and future perspectives. Eur. J. Pain 2020, 24, 1425–1439. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Welte-Jzyk, C.; Seiler, M.; Daublander, M. Neurophysiological changes associated with implant-associated augmentation procedures in the lower jaw. Clin. Implant. Dent. Relat. Res. 2017, 19, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Welte-Jzyk, C.; Seiler, M.; Daublander, M. Neurophysiological changes associated with implant placement. Clin. Oral. Implant. Res. 2017, 28, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Mucke, M.; Cuhls, H.; Radbruch, L.; Baron, R.; Maier, C.; Tolle, T.; Treede, R.D.; Rolke, R. Quantitative sensory testing (QST). English version. Schmerz 2021, 35, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.D. The role of quantitative sensory testing in the prediction of chronic pain. Pain 2019, 160 (Suppl. S1), S66–S69. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Baron, R.; Tolle, T.R.; Binder, A.; Birbaumer, N.; Birklein, F.; Gierthmuhlen, J.; Flor, H.; Geber, C.; Huge, V.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010, 150, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Baad-Hansen, L.; Pigg, M.; Ivanovic, S.E.; Faris, H.; List, T.; Drangsholt, M.; Svensson, P. Intraoral somatosensory abnormalities in patients with atypical odontalgia—A controlled multicenter quantitative sensory testing study. Pain 2013, 154, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Pigg, M.; Baad-Hansen, L.; Svensson, P.; Drangsholt, M.; List, T. Reliability of intraoral quantitative sensory testing (QST). Pain 2010, 148, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Magerl, W.; Krumova, E.K.; Baron, R.; Tolle, T.; Treede, R.D.; Maier, C. Reference data for quantitative sensory testing (QST): Refined stratification for age and a novel method for statistical comparison of group data. Pain 2010, 151, 598–605. [Google Scholar] [CrossRef]
- Matos, R.; Wang, K.; Jensen, J.D.; Jensen, T.; Neuman, B.; Svensson, P.; Arendt-Nielsen, L. Quantitative sensory testing in the trigeminal region: Site and gender differences. J. Orofac. Pain 2011, 25, 161–169. [Google Scholar]
- Wang, Y.; Mo, X.; Zhang, J.; Fan, Y.; Wang, K.; Peter, S. Quantitative sensory testing (QST) in the orofacial region of healthy Chinese: Influence of site, gender and age. Acta Odontol. Scand. 2018, 76, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Green, B.G. Thermal perception on lingual and labial skin. Percept. Psychophys 1984, 36, 209–220. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.A.; Lin, S.M.; Teixeira, M.J.; de Siqueira, J.T.; Jacob Filho, W.; de Siqueira, S. Sensorial differences according to sex and ages. Oral. Dis. 2014, 20, e103–e110. [Google Scholar] [CrossRef] [PubMed]
- Blankenburg, M.; Boekens, H.; Hechler, T.; Maier, C.; Krumova, E.; Scherens, A.; Magerl, W.; Aksu, F.; Zernikow, B. Reference values for quantitative sensory testing in children and adolescents: Developmental and gender differences of somatosensory perception. Pain 2010, 149, 76–88. [Google Scholar] [CrossRef]
- Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Neck pain: Global epidemiology, trends and risk factors. BMC Musculoskelet. Disord. 2022, 23, 26. [Google Scholar] [CrossRef]
- Katz, J.N.; Zimmerman, Z.E.; Mass, H.; Makhni, M.C. Diagnosis and Management of Lumbar Spinal Stenosis: A Review. JAMA 2022, 327, 1688–1699. [Google Scholar] [CrossRef]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L., 3rd. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef] [Green Version]
- Pfau, D.B.; Krumova, E.K.; Treede, R.D.; Baron, R.; Toelle, T.; Birklein, F.; Eich, W.; Geber, C.; Gerhardt, A.; Weiss, T.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain 2014, 155, 1002–1015. [Google Scholar] [CrossRef]
- Jones, L.A.; Berris, M. The psychophysics of temperature perception and thermal-interface design. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, Orlando, FL, USA, 24–25 March 2002; pp. 137–142. [Google Scholar]
- Veres-Nyeki, K.O.; Nyeki, J.; Bodo, G.; Spadavecchia, C. Quantitative sensory testing of the equine face. Equine Vet. J. 2021, 53, 177–185. [Google Scholar] [CrossRef]
- Pieretti, S.; Di Giannuario, A.; Di Giovannandrea, R.; Marzoli, F.; Piccaro, G.; Minosi, P.; Aloisi, A.M. Gender differences in pain and its relief. Ann. Ist. Super. Sanita 2016, 52, 184–189. [Google Scholar] [CrossRef]
- Pavlovic, J.M.; Derby, C.A. Pain in midlife women: A growing problem in need of further research. Women’s Midlife Health 2022, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Nolano, M.; Provitera, V.; Caporaso, G.; Stancanelli, A.; Leandri, M.; Biasiotta, A.; Cruccu, G.; Santoro, L.; Truini, A. Cutaneous innervation of the human face as assessed by skin biopsy. J. Anat. 2013, 222, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, L. Quantitative Sensory Testing in the facial area: A review. Z. Für Evidenz Fortbild. Qual. Gesundh. 2013, 107, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.N.; Welge-Luessen, A.; Bramerson, A.; Bende, M.; Mueller, C.A.; Nordin, S.; Hummel, T. “Taste Strips”—A rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 2009, 256, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Yoshinaka, M.; Ikebe, K.; Uota, M.; Ogawa, T.; Okada, T.; Inomata, C.; Takeshita, H.; Mihara, Y.; Gondo, Y.; Masui, Y.; et al. Age and sex differences in the taste sensitivity of young adult, young-old and old-old Japanese. Geriatr. Gerontol. Int. 2016, 16, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Fikentscher, R.; Roseburg, B.; Spinar, H.; Bruchmuller, W. Loss of taste in the elderly: Sex differences. Clin. Otolaryngol. Allied Sci. 1977, 2, 183–189. [Google Scholar] [CrossRef]
- Duffy, V.B.; Bartoshuk, L.M.; Striegel-Moore, R.; Rodin, J. Taste changes across pregnancy. Ann. N. Y. Acad. Sci. 1998, 855, 805–809. [Google Scholar] [CrossRef]
- Kveton, J.F.; Bartoshuk, L.M. The effect of unilateral chorda tympani damage on taste. Laryngoscope 1994, 104, 25–29. [Google Scholar] [CrossRef]
- Sergi, G.; Bano, G.; Pizzato, S.; Veronese, N.; Manzato, E. Taste loss in the elderly: Possible implications for dietary habits. Crit. Rev. Food Sci. Nutr. 2017, 57, 3684–3689. [Google Scholar] [CrossRef]
- Mueller, C.; Kallert, S.; Renner, B.; Stiassny, K.; Temmel, A.F.; Hummel, T.; Kobal, G. Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 2003, 41, 2–6. [Google Scholar]
- Suter, V.G.; Negoias, S.; Friedrich, H.; Landis, B.N.; Caversaccio, M.D.; Bornstein, M.M. Gustatory function and taste perception in patients with oral lichen planus and tongue involvement. Clin. Oral. Investig. 2017, 21, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.; St Peter, J.V. Sugars and Sweet Taste: Addictive or Rewarding? Int. J. Environ. Res. Public Health 2021, 18, 9791. [Google Scholar] [CrossRef] [PubMed]
- Witt, M. Anatomy and development of the human taste system. Handb. Clin. Neurol. 2019, 164, 147–171. [Google Scholar] [CrossRef]
- Frank, H.E.R.; Amato, K.; Trautwein, M.; Maia, P.; Liman, E.R.; Nichols, L.M.; Schwenk, K.; Breslin, P.A.S.; Dunn, R.R. The evolution of sour taste. Proc. Biol. Sci. 2022, 289, 20211918. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Chaves, M.; Chaves, C.; Lemos, L.; Silva, E.D.; Paiva, A.; Hummel, T. Cross-cultural validation of a taste test with paper strips. Eur. Arch. Otorhinolaryngol. 2016, 273, 3407–3411. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.S.J.; Cascant Ortolano, L.; Bayer, O.; Schweizer, S.; Daubländer, M. Therapy of neurophysiologcial changes after oral-and maxillofacial surgery—A systematic review. Appl. Sci. 2022, 12, 1507. [Google Scholar] [CrossRef]
- Yoshida, R.; Ninomiya, Y. Taste information derived from T1R-expressing taste cells in mice. Biochem. J. 2016, 473, 525–536. [Google Scholar] [CrossRef]
QST Data Male Subjects | QST Data Female Subjects | ||||
---|---|---|---|---|---|
QST Parameter | Orofacial Areal | <40 Years (n = 18) | >40 Years (n = 22) | <40 Years (n = 32) | >40 Years (n = 30) |
QST Mean Raw Data ± SEM or Retransformed Data QST Log Data ± SEM | QST Mean Raw Data ± SEM or Retransformed Data QST Log Data ± SEM | QST Mean Raw Data ± SEM or Retransformed Data QST Log Data ± SEM | QST Mean Raw Data ± SEM or Retransformed Data QST Log Data ± SEM | ||
(▼▲ 95% Confidence Interval) | (▼▲ 95% Confidence Interval) | (▼▲ 95% Confidence Interval) | (▼▲ 95% Confidence Interval) | ||
CDT (Δ°C) | chin | 1.88 (▼1.37▲2.58)/0.63 ± 0.16 | 2.71 (▼2.03▲3.6)/1.0 ± 0.15 | 2.31 (▼1.82▲2.93)/0.84 ± 0.12 | 2.50 (▼1.96▲3.2)/0.92 ± 0.12 |
lower lip | 1.14 (▼0.85▲1.55)/0.13 ± 0.15 | 2.13 (▼1.62▲2.8)/0.76 ± 0.14 | 1.35 (▼1.08▲1.69)/0.30 ± 0.11 | 1.4 (▼1.11▲1.77)/0.34 ± 0.12 | |
tongue | 2.23 (▼1.47▲3.38)/0.80 ± 0.21 | 4.43 (▼3.04▲6.47)/1.49 ± 0.19 | 3.45 (▼2.52▲4.72)/1.24 ± 0.16 | 3.14 (▼2.27▲4.34)/1.15 ± 0.16 | |
gingiva | 1.95 (▼0.99▲3.85)/0.67 ± 0.35 | 4.74 (▼2.56▲8.78)/1.56 ± 0.31 | 2.29 (▼1.38▲3.82)/0.83 ± 0.26 | 2.67 (▼1.57▲4.52)/0.98 ± 0.27 | |
WDT (Δ°C) | chin | 5.56 (▼4.44▲6.94)/1.71 ± 0.11 | 7.08 (▼5.77▲8.67)/1.96 ± 0.10 | 6.22 (▼5.26▲7.36)/1.83 ± 0.09 | 4.98 (▼4.19▲5.93)/1.61 ± 0.09 |
lower lip | 1.47 (▼1.17▲1.84)/0.39 ± 0.11 | 2.45 (▼2.01▲3.01)/0.9 ± 0.10 | 1.66 (▼1.40▲1.96)/0.50 ± 0.09 | 2.00 (▼1.68▲2.38)/0.69 ± 0.09 | |
tongue | 8.50 (▼6.8▲10.63)/2.14 ± 0.11 | 8.83 (▼7.21▲10.81)/2.18 ± 0.10 | 10.06 (▼8.50▲11.9)/2.31 ± 0.09 | 6.91 (▼5.81▲8.22)/1.93 ± 0.09 | |
gingiva | 13.54 (▼10.82▲16.94)/2.61 ± 0.11 | 16.2 (▼13.23▲19.83)/2.8 ± 0.09 | 16.41 (▼13.87▲19.41)/2.8 ± 0.10 | 15.78 (▼13.27▲18.77)/2.76 ± 0.09 | |
TSL (°C) | chin | 7.16 (▼5.43▲9.44)/1.97 ± 0.14 | 9.43 (▼7.34▲12.11)/2.24 ± 0.13 | 6.86 (▼5.57▲8.44)/1.93 ± 0.11 | 7.13 (▼5.75▲8.83)/1.96 ± 0.14 |
lower lip | 2.59 (▼2.03▲3.30)/0.95 ± 0.12 | 4.34 (▼3.48▲5.41)/1.47 ± 0.11 | 2.87 (▼2.39▲3.45)/1.05 ± 0.09 | 3.61 (▼2.99▲4.36)/1.28 ± 0.1 | |
tongue | 9.32 (▼7.52▲11.56)/2.21 ± 0.09 | 13.50 (▼11.12▲16.41)/2.38 ± 0.08 | 10.79 (▼9.18▲12.68)/2.60 ± 0.1 | 9.10 (▼7.70▲10.75)/2.23 ± 0.11 | |
gingiva | 10.62 (▼8.2▲13.75)/2.36 ± 0.13 | 15.72 (▼12.44▲29.85)/2.76 ± 0.12 | 13.47 (▼11.1▲16.35)/2.60 ± 0.1 | 13.43 (▼11▲16.41)/2.6 ± 0.10 | |
CPT(°C) | chin | 15.45 ± 2.59 (▼10.34▲20.56) | 11.11 ± 2.35 (▼6.5▲15.74) | 15.65 ± 1.95(▼11.82▲19.49) | 14.84 ± 2.01 (▼10.88▲18.80) |
lower lip | 11.54 ± 2.9 (▼5.82▲17.26) | 19.21 ± 2.62 (▼14.04▲24.38) | 15.1 ± 2.18 (▼10.81▲19.39) | 16.84 ± 2.25 (▼12.41▲21.26) | |
tongue | 16.09 ± 2.69 (▼10.8▲21.39) | 13.98 ± 2.43 (▼9.19▲18.77) | 13.6 ± 2.01 (▼9.63▲17.57) | 16.54 ± 2.08 (▼12.44▲20.65) | |
gingiva | 21.58 ± 1.34 (▼18.94▲24.22) | 21.63 ± 1.21 (▼19.24▲24.02) | 20.66 ± 1.00 (▼18.68▲22.64) | 22.47 ± 1.04 (▼20.43▲24.52) | |
HPT (°C) | chin | 44.61 ± 1.05 (▼42.54▲46.68) | 47.75 ± 0.95 (▼45.87▲49.62) | 45.17 ± 0.79 (▼43.62▲46.73) | 45.44 ± 0.81 (▼43.84▲47.05) |
lower lip | 45.29 ± 1.25 (▼42.82▲47.75) | 42.36 ± 1.13 (▼40.13▲44.59) | 44.53 ± 0.94 (▼42.68▲46.38) | 42.13 ± 0.97 (▼40.22▲44.04) | |
tongue | 47.19 ± 1.12 (▼44.99▲49.39) | 46.47 ± 1.01 (▼44.48▲48.46) | 47.37 ± 0.84 (▼45.72▲49.02) | 45.66 ± 0.87 (▼43.95▲47.36) | |
gingiva | 48.16 ± 0.58 (▼47.02▲49.30) | 49.5 ± 0.52 (▼48.47▲50.53) | 49.02 ± 0.43 (▼48.17▲49.88) | 48.83 ± 0.45 (▼47.95▲49.71) | |
MDT (mN) | chin | 0.06 (▼0.04▲0.08)/−2.87 ± 0.16 | 0.06 (▼0.05▲0.08)/−2.79 ± 0.15 | 0.05 (▼0.04▲0.06)/−3.05 ± 0.12 | 0.04 (▼0.03▲0.06)/−3.13 ± 0.12 |
lower lip | 0.07 (▼0.06▲0.09)/−2.63 ± 0.13 | 0.1 (▼0.08▲0.12)/−2.34 ± 1.12 | 0.05 (▼0.04▲0.06)/−2.94 ± 0.1 | 0.06 (▼0.05▲0.07)/−2.90 ± 0.10 | |
tongue | 0.05 (▼0.04▲0.07)/−3.01 ± 0.16 | 0.07 (▼0.06▲0.1)/−2.6 ± 0.14 | 0.06 (▼0.05▲0.08)/−2.78 ± 0.12 | 0.05 (▼0.04▲0.07)/−2.06 ± 0.12 | |
gingiva | 3.89 (▼1.4 ▲10.79)/1.36 ± 0.52 | 3.41 (▼1.35▲8.6)/1.23 ± 0.47 | 4.39 (▼2.04▲9.44)/1.48 ± 0.39 | 4.37 (▼1.98▲9.63)/1.47 ± 0.40 | |
MPT (mN) | chin | 11.76 (▼7.1 ▲19.48)/2.46 ± 0.26 | 10.04 (▼6.36▲15.85)/2.31 ± 0.23 | 16.93 (▼11.59▲24.72)/2.83 ± 0.19 | 10.90 (▼7.37▲16.12)/2.39 ± 0.2 |
lower lip | 9.89 (▼6.88▲14.2)/2.29 ± 0.18 | 8.18 (▼5.9 ▲11.35)/2.10 ± 0.17 | 9.35 (▼7.13▲12.27)/2.24 ± 0.14 | 11.91 (▼8.99▲15.76)/2.48 ± 0.14 | |
tongue | 17.62 (▼10.5 ▲29.56)/2.87 ± 0.26 | 13.76 (▼8.61▲21.97)/2.62 ± 0.24 | 24.36 (▼16.52▲35.91)/3.19 ± 0.2 | 23.21 (▼13.55▲34.66)/3.15 ± 0.20 | |
gingiva | 17.96 (▼9.86▲32.70)/2.89 ± 0.30 | 21.79 (▼12.67▲37.47)/3.08 ± 0.28 | 13.34 (▼8.51▲20.91)/2.59 ± 0.23 | 21.86 (▼13.74▲34.77)/3.09 ± 0.24 | |
MPS (0–100) | chin | 0.86 (▼0.34▲2.00)/−0.16 ± 0.43 | 1.07 (▼0.5 ▲2.29)/0.06 ± 0.39 | 1.19 (▼0.63▲2.25)/0.178 ± 0.32 | 1.73 (▼0.9 ▲3.33)/0.55 ± 0.33 |
lower lip | 0.97 (▼0.47▲2.04)/−0.03 ± 0.37 | 0.68 (▼0.35▲1.32)/−0.39 ± 0.34 | 1.24 (▼0.71▲2.16)/0.22 ± 0.28 | 1.19 (▼0.67▲2.12)/0.178 ± 0.29 | |
tongue | 0.57 (▼0.27▲1.23)/−0.56 ± 0.39 | 0.59 (▼0.3 ▲1.17)/−0.53 ± 0.35 | 0.45 (▼0.25▲0.79)/−0.81 ± 0.29 | 0.8 (▼0.44▲1.44)/−0.23 ± 0.3 | |
gingiva | 0.58 (▼0.27▲1.25)/−0.54 ± 0.39 | 0.33 (▼0.17▲0.67)/−1.10 ± 0.35 | 0.51 (▼0.28▲0.90)/−0.68 ± 0.29 | 0.68 (▼0.38▲1.24)/−0.38 ± 0.30 | |
WUR (0–100) | chin | 2.43 (▼1.62▲3.65)/0.89 ± 0.21 | 2.45 (▼1.69▲3.54)/0.9 ± 0.19 | 2.59 (▼1.89▲3.55)/0.95 ± 0.16 | 2.57 (▼1.87▲3.52)/0.94 ± 0.16 |
lower lip | 2.10 (▼1.43▲3.09)/0.74 ± 0.2 | 3.09 (▼2.18▲4.38)/1.13 ± 0.18 | 2.27 (▼1.70▲3.03)/0.82 ± 0.15 | 2.61 (▼1.94▲3.52)/0.96 ± 0.15 | |
tongue | 3.22 (▼2.18▲4.77)/1.17 ± 0.2 | 3.47 (▼2.44▲4.95)/1.25 ± 0.18 | 2.54 (▼1.9 ▲3.41)/0.93 ± 0.15 | 3.21 (▼2.37▲4.35)/1.17 ± 0.15 | |
gingiva | 3.12 (▼1.99▲4.88)/1.14 ± 0.23 | 2.45 (▼1.63▲3.68)/0.9 ± 0.21 | 3.76 (▼2.65▲5.32)/1.32 ± 0.18 | 3.04 (▼2.15▲4.31)/1.11 ± 0.18 |
Chin | Lower Lip | Gingiva | Tongue | |
---|---|---|---|---|
CDT | 0.886 | 0.85 | 0.422 | 0.757 |
WDT | 0.903 | 0.003 ** | 0.63 | 0.107 |
TSL | 0.521 | 0.103 | 0.431 | 0.32 |
CPT | 0.08 | 0.654 | 0.192 | 0.796 |
HPT | 0.641 | 0.054 | 0.658 | 0.31 |
MDT | 0.044 * | 0.865 | 0.649 | 0.865 |
MPT | 0.526 | 0.567 | 0.553 | 0.572 |
MPS | 0.101 | 0.690 | 0.386 | 0.384 |
WUR | 0.585 | 0.735 | 0.643 | 0.65 |
Position | Age | Sex | Position ∗ Age | Position ∗ Sex | Age ∗ Sex | Position ∗ Age ∗ Sex | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | F | p | DF | F | p | DF | F | p | DF | F | p | DF | F | p | DF | F | p | DF | F | p | |
CDT | 3 | 19.04 | <0.0001 *** | 1 | 11.82 | <0.001 *** | 1 | 0.32 | 0.574 | 3 | 0.31 | 0.818 | 3 | 0.51 | 0.674 | 1 | 9.01 | 0.003 ** | 3 | 0.48 | 0.696 |
WDT | 3 | 458.94 | <0.0001 *** | 1 | 0.98 | 0.323 | 1 | 0.19 | 0.662 | 3 | 6.71 | 0.002 ** | 3 | 1.01 | 0.388 | 1 | 7.08 | 0.008 * | 3 | 0.42 | 0.736 |
TSL | 3 | 129.82 | <0.0001 *** | 1 | 14.25 | 0.002 ** | 1 | 1.71 | 0.193 | 3 | 1.29 | 0.278 | 3 | 0.64 | 0.589 | 1 | 11.20 | 0.001 ** | 3 | 0.42 | 0.738 |
CPT | 3 | 18.79 | <0.0001 *** | 1 | 0.67 | 0.413 | 1 | 0.36 | 0.548 | 3 | 1.58 | 0.195 | 3 | 0.22 | 0.882 | 1 | 0.27 | 0.604 | 3 | 1.00 | 0.392 |
HPT | 3 | 33.63 | <0.0001 *** | 1 | 0.82 | 0.368 | 1 | 0.79 | 0.375 | 3 | 4.14 | 0.007 ** | 3 | 0.33 | 0.804 | 1 | 1.86 | 0.174 | 3 | 0.5 | 0.680 |
MDT | 3 | 117.27 | <0.0001 *** | 1 | 0.19 | 0.666 | 1 | 1.33 | 0.249 | 3 | 0.33 | 0.802 | 3 | 1.85 | 0.139 | 1 | 0.77 | 0.381 | 3 | 0.56 | 0.644 |
MPT | 3 | 10.86 | <0.0001 *** | 1 | 0.3 | 0.861 | 1 | 2.24 | 0.136 | 3 | 1.3 | 0.275 | 3 | 0.92 | 0.431 | 1 | 0.54 | 0.462 | 3 | 0.58 | 0.626 |
MPS | 3 | 5.42 | 0.0013 ** | 1 | 0.15 | 0.698 | 1 | 2.74 | 0.1 | 3 | 0.63 | 0.504 | 3 | 0.28 | 0.84 | 1 | 1.91 | 0.169 | 3 | 0.19 | 0.902 |
WUR | 3 | 1.82 | 0.145 | 1 | 0.28 | 0.6 | 1 | 0.02 | 0.880 | 3 | 1.30 | 0.275 | 3 | 0.69 | 0.6 | 1 | 0.01 | 0.921 | 3 | 0.25 | 0.864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, A.; Welte-Jzyk, C.; Schmidtmann, I.; Geber, C.; Al-Nawas, B.; Daubländer, M. Somatosensory and Gustatory Profiling in the Orofacial Region. Diagnostics 2022, 12, 3198. https://doi.org/10.3390/diagnostics12123198
Hartmann A, Welte-Jzyk C, Schmidtmann I, Geber C, Al-Nawas B, Daubländer M. Somatosensory and Gustatory Profiling in the Orofacial Region. Diagnostics. 2022; 12(12):3198. https://doi.org/10.3390/diagnostics12123198
Chicago/Turabian StyleHartmann, Amely, Claudia Welte-Jzyk, Irene Schmidtmann, Christian Geber, Bilal Al-Nawas, and Monika Daubländer. 2022. "Somatosensory and Gustatory Profiling in the Orofacial Region" Diagnostics 12, no. 12: 3198. https://doi.org/10.3390/diagnostics12123198
APA StyleHartmann, A., Welte-Jzyk, C., Schmidtmann, I., Geber, C., Al-Nawas, B., & Daubländer, M. (2022). Somatosensory and Gustatory Profiling in the Orofacial Region. Diagnostics, 12(12), 3198. https://doi.org/10.3390/diagnostics12123198