Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up
Abstract
:1. Introduction
2. The Framework of Fetal Neurological Consultations
2.1. Data Collection
2.2. Imaging
2.3. Genetic Testing
2.4. Multidisciplinary Team
2.5. Counseling Setting
3. Fetal CNS Abnormalities
3.1. Isolated Ventriculomegaly
3.2. Isolated Corpus Callosum Agenesis (cACC)
3.3. Posterior Fossa Malformations
3.3.1. Blake’s Pouch
3.3.2. Inferior Vermian Hypoplasia
3.3.3. Dandy–Walker Malformation (DWM)
3.3.4. Mega Cisterna Magna (MCM)
3.3.5. Cerebellar Hypoplasia
4. Postnatal Follow-Up
Neurodevelopmental Assessment
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ream, M.A.; Mulkey, S.B. A Neurologist’s Practical Guide to Conducting a Fetal Consultation. Semin. Pediatr. Neurol. 2022, 42, 100957. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S. “The First Thousand Days” Define a Fetal/Neonatal Neurology Program. Front. Pediatr. 2021, 9, 683138. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.R.; Vollmer, B.; Howe, D.; Boxall, S.; Foulds, N.; de Lacy, P.; Vasudevan, C.; Griffiths, P.D.; Piercy, H. Antenatal counselling for prospective parents whose fetus has a neurological anomaly: Part 1, experiences and recommendations for service design. Dev. Med. Child Neurol. 2022, 64, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Santirocco, M.; Plaja, A.; Rodó, C.; Valenzuela, I.; Arévalo, S.; Castells, N.; Abuli, A.; Tizzano, E.; Maiz, N.; Carreras, E. Chromosomal microarray analysis in fetuses with central nervous system anomalies: An 8-year long observational study from a tertiary care university hospital. Prenat. Diagn. 2021, 41, 123–135. [Google Scholar] [CrossRef]
- Zanni, G.; Bertini, E. X-linked ataxias. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 155, pp. 175–189. ISBN 978-0-444-64189-2. [Google Scholar]
- Sagi-Dain, L.; Kurolap, A.; Ilivitzki, A.; Mory, A.; Paperna, T.; Regeneron Genetics Center; Kedar, R.; Gonzaga-Jauregui, C.; Peleg, A.; Baris Feldman, H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am. J. Med. Genet. A 2020, 182, 205–212. [Google Scholar] [CrossRef]
- Leibovitz, Z.; Lerman-Sagie, T.; Haddad, L. Fetal Brain Development: Regulating Processes and Related Malformations. Life 2022, 12, 809. [Google Scholar] [CrossRef]
- Hart, A.R.; Vasudevan, C.; Griffiths, P.D.; Foulds, N.; Piercy, H.; de Lacy, P.; Boxall, S.; Howe, D.; Vollmer, B. Antenatal counselling for prospective parents whose fetus has a neurological anomaly: Part 2, risks of adverse outcome in common anomalies. Dev. Med. Child Neurol. 2022, 64, 23–39. [Google Scholar] [CrossRef]
- D’Addario, V. Diagnostic approach to fetal ventriculomegaly. J. Perinat. Med. 2022. [Google Scholar] [CrossRef]
- Malinger, G.; Paladini, D.; Haratz, K.K.; Monteagudo, A.; Pilu, G.L.; Timor-Tritsch, I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 1: Performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet. Gynecol. 2020, 56, 476–484. [Google Scholar] [CrossRef]
- The ENSO Working Group; Di Mascio, D.; Khalil, A.; Thilaganathan, B.; Rizzo, G.; Buca, D.; Liberati, M.; Celentano, C.; Melchiorre, K.; Caulo, M.; et al. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: International multicenter study. Ultrasound Obstet. Gynecol. 2020, 56, 340–347. [Google Scholar] [CrossRef]
- Sileo, F.G.; Di Mascio, D.; Rizzo, G.; Caulo, M.; Manganaro, L.; Bertucci, E.; Masmejan, S.; Liberati, M.; D’Amico, A.; Nappi, L.; et al. Role of prenatal magnetic resonance imaging in fetuses with isolated agenesis of corpus callosum in the era of fetal neurosonography: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2021, 100, 7–16. [Google Scholar] [CrossRef] [PubMed]
- The ENSO Working Group; Sileo, F.G.; Pilu, G.; Prayer, D.; Rizzo, G.; Khalil, A.; Managanaro, L.; Volpe, P.; Van Mieghem, T.; Bertucci, E.; et al. Role of prenatal magnetic resonance imaging in fetuses with isolated anomalies of corpus callosum: Multinational study. Ultrasound Obstet. Gynecol. 2021, 58, 26–33. [Google Scholar] [CrossRef]
- Righini, A.; Parazzini, C.; Doneda, C.; Avagliano, L.; Arrigoni, F.; Rustico, M.; Consonni, D.; Re, T.J.; Bulfamante, G.; Triulzi, F. Early Formative Stage of Human Focal Cortical Gyration Anomalies: Fetal MRI. Am. J. Roentgenol. 2012, 198, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Righini, A.; Genovese, M.; Parazzini, C.; Severino, M.; Scola, E.; Pinelli, L.; Conte, G.; Derrico, I.; Di Maurizio, M.; Talenti, G.; et al. Cortical formation abnormalities on foetal MR imaging: A proposed classification system trialled on 356 cases from Italian and UK centres. Eur. Radiol. 2020, 30, 5250–5260. [Google Scholar] [CrossRef] [PubMed]
- Radoš, M.; Judaš, M.; Kostović, I. In vitro MRI of brain development. Eur. J. Radiol. 2006, 57, 187–198. [Google Scholar] [CrossRef]
- Diderich, K.E.M.; Romijn, K.; Joosten, M.; Govaerts, L.C.P.; Polak, M.; Bruggenwirth, H.T.; Wilke, M.; Slegtenhorst, M.A.; Bever, Y.; Brooks, A.S.; et al. The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies. Acta Obstet. Gynecol. Scand. 2021, 100, 1106–1115. [Google Scholar] [CrossRef]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef]
- Mellis, R.; Oprych, K.; Scotchman, E.; Hill, M.; Chitty, L.S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat. Diagn. 2022, 42, 662–685. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K.; et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Filer, D.L.; Mieczkowski, P.A.; Brandt, A.; Gilmore, K.L.; Powell, B.C.; Berg, J.S.; Wilhelmsen, K.C.; Vora, N.L. Noninvasive prenatal exome sequencing diagnostic utility limited by sequencing depth and fetal fraction. Prenat. Diagn. 2022, 42, 567–573. [Google Scholar] [CrossRef]
- Scotchman, E.; Chandler, N.J.; Mellis, R.; Chitty, L.S. Noninvasive Prenatal Diagnosis of Single-Gene Diseases: The Next Frontier. Clin. Chem. 2020, 66, 53–60. [Google Scholar] [CrossRef]
- Jelin, A.C.; Vora, N. Whole Exome Sequencing. Obstet. Gynecol. Clin. N. Am. 2018, 45, 69–81. [Google Scholar] [CrossRef]
- Baptiste, C.; Mellis, R.; Aggarwal, V.; Lord, J.; Eberhardt, R.; Kilby, M.D.; Maher, E.R.; Wapner, R.; Giordano, J.; Chitty, L. Fetal central nervous system anomalies: When should we offer exome sequencing? Prenat. Diagn. 2022, 42, 736–743. [Google Scholar] [CrossRef]
- Lei, T.-Y.; She, Q.; Fu, F.; Zhen, L.; Li, R.; Yu, Q.-X.; Wang, D.; Li, Y.-S.; Cheng, K.; Zhou, H.; et al. Prenatal exome sequencing in fetuses with callosal anomalies. Prenat. Diagn. 2022, 42, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Malinger, G.; Kidron, D.; Schreiber, L.; Ben-Sira, L.; Hoffmann, C.; Lev, D.; Lerman-Sagie, T. Prenatal diagnosis of malformations of cortical development by dedicated neurosonography. Ultrasound Obstet. Gynecol. 2007, 29, 178–191. [Google Scholar] [CrossRef]
- Scelsa, B.; Rustico, M.; Righini, A.; Parazzini, C.; Balestriero, M.A.; Introvini, P.; Spaccini, L.; Mastrangelo, M.; Lista, G.; Zuccotti, G.V.; et al. Mild ventriculomegaly from fetal consultation to neurodevelopmental assessment: A single center experience and review of the literature. Eur. J. Paediatr. Neurol. 2018, 22, 919–928. [Google Scholar] [CrossRef]
- Dror, R.; Malinger, G.; Ben-Sira, L.; Lev, D.; Pick, C.G.; Lerman-Sagie, T. Developmental Outcome of Children With Enlargement of the Cisterna Magna Identified in Utero. J. Child Neurol. 2009, 24, 1486–1492. [Google Scholar] [CrossRef]
- Moutard, M.-L.; Kieffer, V.; Feingold, J.; Lewin, F.; Baron, J.-M.; Adamsbaum, C.; Gélot, A.; Isapof, A.; Kieffer, F.; de Villemeur, T.B. Isolated corpus callosum agenesis: A ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat. Diagn. 2012, 32, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Lanna, M.; Scelsa, B.; Cutillo, G.; Amendolara, M.; Doneda, C.; Balestriero, M.; Faiola, S.; Casati, D.; Spaccini, L.; Cetin, I. Long-term outcome of consecutive case series of congenital isolated agenesis of corpus callosum. Ultrasound Obstet. Gynecol. 2022, 60, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Colitto, F.; Bianco, F.; Luciano, R.; Donvito, V.; Baranello, G.; Brogna, C.; Masini, L.; Ciotti, S.; Mercuri, E. Visual, motor and perceptual abilities at school age in children with isolated mild antenatal ventricular dilatation. Early Hum. Dev. 2009, 85, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Scelsa, B.; Cutillo, G.; Lanna, M.M.; Righini, A.; Balestriero, M.A.; Brazzoduro, V.; Zambrano, S.; Parazzini, C.; Alfei, E.; Rustico, M. Prenatal Diagnosis and Neurodevelopmental Outcome in Isolated Cerebellar Hypoplasia of Suspected Hemorrhagic Etiology: A Retrospective Cohort Study. Cerebellum 2021, 21, 944–953. [Google Scholar] [CrossRef]
- Massoud, M.; Cagneaux, M.; Garel, C.; Varene, N.; Moutard, M.-L.; Billette, T.; Benezit, A.; Rougeot, C.; Jouannic, J.-M.; Massardier, J.; et al. Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: Significance and implications for prenatal diagnosis. Ultrasound Obstet. Gynecol. 2014, 44, 447–454. [Google Scholar] [CrossRef]
- D’Antonio, F.; Khalil, A.; Garel, C.; Pilu, G.; Rizzo, G.; Lerman-Sagie, T.; Bhide, A.; Thilaganathan, B.; Manzoli, L.; Papageorghiou, A.T. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): Neurodevelopmental outcome. Ultrasound Obstet. Gynecol. 2016, 48, 28–37. [Google Scholar] [CrossRef]
- Stambolliu, E.; Ioakeim-Ioannidou, M.; Kontokostas, K.; Dakoutrou, M.; Kousoulis, A.A. The Most Common Comorbidities in Dandy-Walker Syndrome Patients: A Systematic Review of Case Reports. J. Child Neurol. 2017, 32, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi Colleoni, G.; Contro, E.; Carletti, A.; Ghi, T.; Campobasso, G.; Rembouskos, G.; Volpe, G.; Pilu, G.; Volpe, P. Prenatal diagnosis and outcome of fetal posterior fossa fluid collections. Ultrasound Obstet. Gynecol. 2012, 39, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Tarui, T.; Limperopoulos, C.; Sullivan, N.R.; Robertson, R.L.; du Plessis, A.J. Long-term developmental outcome of children with a fetal diagnosis of isolated inferior vermian hypoplasia. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F54–F58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garel, C.; Luton, D.; Oury, J.-F.; Gressens, P. Ventricular dilatations. Childs Nerv. Syst. 2003, 19, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.S.; Monteagudo, A.; Kuller, J.A.; Craigo, S.; Norton, M.E. Mild fetal ventriculomegaly: Diagnosis, evaluation, and management. Am. J. Obstet. Gynecol. 2018, 219, B2–B9. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio, D.; Khalil, A.; Pilu, G.; Rizzo, G.; Caulo, M.; Liberati, M.; Giancotti, A.; Lees, C.; Volpe, P.; Buca, D.; et al. Role of prenatal magnetic resonance imaging in fetuses with isolated severe ventriculomegaly at neurosonography: A multicenter study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 105–110. [Google Scholar] [CrossRef]
- Toren, A.; Alpern, S.; Berkenstadt, M.; Bar-Yosef, O.; Pras, E.; Katorza, E. Chromosomal Microarray Evaluation of Fetal Ventriculomegaly. Isr. Med. Assoc. J. IMAJ 2020, 22, 639–644. [Google Scholar] [PubMed]
- Huang, R.-N.; Chen, J.-Y.; Pan, H.; Liu, Q.-Q. Correlation between mild fetal ventriculomegaly, chromosomal abnormalities, and copy number variations. J. Matern. Fetal Neonatal Med. 2022, 35, 4788–4796. [Google Scholar] [CrossRef]
- Chang, Q.; Yang, Y.; Peng, Y.; Liu, S.; Li, L.; Deng, X.; Yang, M.; Lan, Y. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with ventriculomegaly. Eur. J. Paediatr. Neurol. 2020, 25, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lyall, A.E.; Woolson, S.; Wolfe, H.M.; Goldman, B.D.; Reznick, J.S.; Hamer, R.M.; Lin, W.; Styner, M.; Gerig, G.; Gilmore, J.H. Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2. Early Hum. Dev. 2012, 88, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Hahner, N.; Benkarim, O.M.; Aertsen, M.; Perez-Cruz, M.; Piella, G.; Sanroma, G.; Bargallo, N.; Deprest, J.; Gonzalez Ballester, M.A.; Gratacos, E.; et al. Global and Regional Changes in Cortical Development Assessed by MRI in Fetuses with Isolated Nonsevere Ventriculomegaly Correlate with Neonatal Neurobehavior. Am. J. Neuroradiol. 2019, 40, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Benkarim, O.M.; Hahner, N.; Piella, G.; Gratacos, E.; González Ballester, M.A.; Eixarch, E.; Sanroma, G. Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly. NeuroImage Clin. 2018, 18, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Vasung, L.; Rollins, C.K.; Zhang, J.; Velasco-Annis, C.; Yang, E.; Lin, P.-Y.; Sutin, J.; Warfield, S.K.; Soul, J.; Estroff, J.; et al. Abnormal development of transient fetal zones in mild isolated fetal ventriculomegaly. Cereb. Cortex 2022, bhac125. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Caverhill-Godkewitsch, S.; Beaulieu, C. Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. NeuroImage 2010, 52, 20–31. [Google Scholar] [CrossRef]
- Leombroni, M.; Khalil, A.; Liberati, M.; D’Antonio, F. Fetal midline anomalies: Diagnosis and counselling Part 1: Corpus callosum anomalies. Eur. J. Paediatr. Neurol. 2018, 22, 951–962. [Google Scholar] [CrossRef]
- Hanna, R.M.; Marsh, S.E.; Swistun, D.; Al-Gazali, L.; Zaki, M.S.; Abdel-Salam, G.M.; Al-Tawari, A.; Bastaki, L.; Kayserili, H.; Rajab, A.; et al. Distinguishing 3 classes of corpus callosal abnormalities in consanguineous families. Neurology 2011, 76, 373–382. [Google Scholar] [CrossRef]
- Hofman, J.; Hutny, M.; Sztuba, K.; Paprocka, J. Corpus Callosum Agenesis: An Insight into the Etiology and Spectrum of Symptoms. Brain Sci. 2020, 10, 625. [Google Scholar] [CrossRef]
- Rotmensch, S.; Monteagudo, A. Agenesis of the Corpus Callosum. Am. J. Obstet. Gynecol. 2020, 223, B17–B22. [Google Scholar] [CrossRef]
- D’Antonio, F.; Pagani, G.; Familiari, A.; Khalil, A.; Sagies, T.-L.; Malinger, G.; Leibovitz, Z.; Garel, C.; Moutard, M.L.; Pilu, G.; et al. Outcomes Associated With Isolated Agenesis of the Corpus Callosum: A Meta-analysis. Pediatrics 2016, 138, e20160445. [Google Scholar] [CrossRef] [Green Version]
- des Portes, V.; Rolland, A.; Velazquez-Dominguez, J.; Peyric, E.; Cordier, M.-P.; Gaucherand, P.; Massardier, J.; Massoud, M.; Curie, A.; Pellot, A.-S.; et al. Outcome of isolated agenesis of the corpus callosum: A population-based prospective study. Eur. J. Paediatr. Neurol. 2018, 22, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Shwe, W.H.; Schlatterer, S.D.; Williams, J.; du Plessis, A.J.; Mulkey, S.B. Outcome of Agenesis of the Corpus Callosum Diagnosed by Fetal MRI. Pediatr. Neurol. 2022, 135, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.S.; Paul, L.K. The Neuropsychological Syndrome of Agenesis of the Corpus Callosum. J. Int. Neuropsychol. Soc. 2019, 25, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Bartha-Doering, L.; Schwartz, E.; Kollndorfer, K.; Fischmeister, F.P.S.; Novak, A.; Langs, G.; Werneck, H.; Prayer, D.; Seidl, R.; Kasprian, G. Effect of corpus callosum agenesis on the language network in children and adolescents. Brain Struct. Funct. 2021, 226, 701–713. [Google Scholar] [CrossRef]
- Siffredi, V.; Anderson, V.; McIlroy, A.; Wood, A.G.; Leventer, R.J.; Spencer-Smith, M.M. A Neuropsychological Profile for Agenesis of the Corpus Callosum? Cognitive, Academic, Executive, Social, and Behavioral Functioning in School-Age Children. J. Int. Neuropsychol. Soc. 2018, 24, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folliot-Le Doussal, L.; Chadie, A.; Brasseur-Daudruy, M.; Verspyck, E.; Saugier-Veber, P.; Marret, S. Neurodevelopmental outcome in prenatally diagnosed isolated agenesis of the corpus callosum. Early Hum. Dev. 2018, 116, 9–16. [Google Scholar] [CrossRef]
- Milani, H.J.F.; de, S. Barreto, E.Q.; da S. Ximenes, R.L.; Baldo, C.A.R.; Araujo Júnior, E.; Moron, A.F. Fetal posterior fossa malformations: Review of the current knowledge. Radiol. Bras. 2019, 52, 380–386. [Google Scholar] [CrossRef]
- Stoodley, C.J. The Cerebellum and Neurodevelopmental Disorders. Cerebellum 2016, 15, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Crucitti, J.; Hyde, C.; Enticott, P.G.; Stokes, M.A. Are Vermal Lobules VI–VII Smaller in Autism Spectrum Disorder? Cerebellum 2020, 19, 617–628. [Google Scholar] [CrossRef]
- Kau, T.; Marterer, R.; Kottke, R.; Birnbacher, R.; Gellen, J.; Nagy, E.; Boltshauser, E. Blake’s Pouch Cysts and Differential Diagnoses in Prenatal and Postnatal MRI: A Pictorial Review. Clin. Neuroradiol. 2020, 30, 435–445. [Google Scholar] [CrossRef]
- Post, A.; Norton, M.E.; Monteagudo, A. Blake’s Pouch Cyst. Am. J. Obstet. Gynecol. 2020, 223, B47–B50. [Google Scholar] [CrossRef] [PubMed]
- Malinger, G.; Lev, D.; Lerman-Sagie, T. The fetal cerebellum. Pitfalls in diagnosis and management. Prenat. Diagn. 2009, 29, 372–380. [Google Scholar] [CrossRef]
- Nagaraj, U.D.; Kline-Fath, B.M.; Horn, P.S.; Venkatesan, C. Evaluation of Posterior Fossa Biometric Measurements on Fetal MRI in the Evaluation of Dandy-Walker Continuum. Am. J. Neuroradiol. 2021, 42, 1716–1721. [Google Scholar] [CrossRef]
- D’Antonio, F.; Khalil, A.; Garel, C.; Pilu, G.; Rizzo, G.; Lerman-Sagie, T.; Bhide, A.; Thilaganathan, B.; Manzoli, L.; Papageorghiou, A.T. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal ultrasound imaging (part 1): Nomenclature, diagnostic accuracy and associated anomalies. Ultrasound Obstet. Gynecol. 2016, 47, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Limperopoulos, C.; Robertson, R.L.; Estroff, J.A.; Barnewolt, C.; Levine, D.; Bassan, H.; du Plessis, A.J. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: Potential pitfalls and neurodevelopmental outcome. Am. J. Obstet. Gynecol. 2006, 194, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Coi, A.; Barišić, I.; Garne, E.; Addor, M.-C.; Bergman, J.E.H.; Bianchi, F.; Boban, L.; Braz, P.; Cavero-Carbonell, C.; et al. Epidemiology of Dandy-Walker Malformation in Europe: A EUROCAT Population-Based Registry Study. Neuroepidemiology 2019, 53, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, A. Dandy-Walker Malformation. Am. J. Obstet. Gynecol. 2020, 223, B38–B41. [Google Scholar] [CrossRef]
- Whitehead, M.T.; Barkovich, M.J.; Sidpra, J.; Alves, C.A.; Mirsky, D.M.; Öztekin, Ö.; Bhattacharya, D.; Lucato, L.T.; Sudhakar, S.; Taranath, A.; et al. Refining the Neuroimaging Definition of the Dandy-Walker Phenotype. Am. J. Neuroradiol. 2022, 43, 1488–1493. [Google Scholar] [CrossRef]
- Boddaert, N.; Klein, O.; Ferguson, N.; Sonigo, P.; Parisot, D.; Hertz-Pannier, L.; Baraton, J.; Emond, S.; Simon, I.; Chigot, V.; et al. Intellectual prognosis of the Dandy-Walker malformation in children: The importance of vermian lobulation. Neuroradiology 2003, 45, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, S.; Madan, N.; Graham, G.; Samura, O.; Kitano, R.; Yun, H.J.; Craig, A.; Nakamura, T.; Hozawa, A.; Grant, E.; et al. Regional brain development in fetuses with Dandy-Walker malformation: A volumetric fetal brain magnetic resonance imaging study. PLoS ONE 2022, 17, e0263535. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.-L.; Pan, M.-Z.; Ma, Z.; Tao, G.-W. Are fetal gender and gestational age related to the size of cisterna magna? J. Matern. Fetal Neonatal Med. 2022, 35, 4312–4317. [Google Scholar] [CrossRef]
- Phillips, J.R.; Hewedi, D.H.; Eissa, A.M.; Moustafa, A.A. The Cerebellum and Psychiatric Disorders. Front. Public Health 2015, 3, 66. [Google Scholar] [CrossRef] [Green Version]
- Poretti, A.; Boltshauser, E.; Huisman, T.A.G.M. Pre- and Postnatal Neuroimaging of Congenital Cerebellar Abnormalities. The Cerebellum 2016, 15, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Poretti, A.; Limperopoulos, C.; Roulet-Perez, E.; Wolf, N.I.; Rauscher, C.; Prayer, D.; Müller, A.; Weissert, M.; Kotzaeridou, U.; Du Plessis, A.J.; et al. Outcome of severe unilateral cerebellar hypoplasia: Outcome of Severe Unilateral Cerebellar Hypoplasia. Dev. Med. Child Neurol. 2009, 52, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Pinchefsky, E.F.; Accogli, A.; Shevell, M.I.; Saint-Martin, C.; Srour, M. Developmental outcomes in children with congenital cerebellar malformations. Dev. Med. Child Neurol. 2019, 61, 350–358. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Timms, A.E.; Thomson, Z.; Mirzaa, G.M.; Bennett, J.T.; Rosenberg, A.B.; Roco, C.M.; Hirano, M.; Abidi, F.; Haldipur, P.; et al. Redefining the Etiologic Landscape of Cerebellar Malformations. Am. J. Hum. Genet. 2019, 105, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Dean, D.C.; Dirks, H.; O’Muircheartaigh, J.; Walker, L.; Jerskey, B.A.; Lehman, K.; Han, M.; Waskiewicz, N.; Deoni, S.C.L. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr. Radiol. 2014, 44, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Gascoigne, D.A.; Serdyukova, N.A.; Aksenov, D.P. Early Development of the GABAergic System and the Associated Risks of Neonatal Anesthesia. Int. J. Mol. Sci. 2021, 22, 12951. [Google Scholar] [CrossRef]
- Aksenov, D.P. Normal Development of Local Neurovascular Interactions and the Diagnostic Value of Resting State Functional MRI in Neurovascular Deficiency Based on the Example of Neonatal Anesthesia Exposure. Front. Neurol. 2021, 12, 664706. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Fetters, L.; Adde, L.; Badawi, N.; Bancale, A.; Boyd, R.N.; Chorna, O.; Cioni, G.; Damiano, D.L.; Darrah, J.; et al. Early Intervention for Children Aged 0 to 2 Years With or at High Risk of Cerebral Palsy: International Clinical Practice Guideline Based on Systematic Reviews. JAMA Pediatr. 2021, 175, 846. [Google Scholar] [CrossRef] [PubMed]
Fetal Malformation | Neurodevelopmental Outcome | Postnatal Investigations | Frequent Associated Abnormalities | ||
---|---|---|---|---|---|
normal | Mild/moderate | severe | |||
Isolated ventriculomegaly | 73–93% | 6.9% | 7.9% | Brain ultrasound, MRI 1 | Cortical malformations, periventricular heterotopia |
Isolated corpus callosum agenesis | 61–70% | 14–27% | 8.2–12.5% | Genetic consultation, WES, MRI | Cortical malformations, midline defects, extra-CNS abnormalities |
Posterior Fossa malformations | |||||
Blake’s pouch | 95–100% | 0–0.5% | Brain ultrasound | Ventriculomegaly | |
Inferior vermian hypoplasia | 85–100% | 10% | 5% | MRI | Cortical malformations |
Dandy–Walker malformation | 40% | 6.4% | 58.2% | MRI, genetic consultation, WES, serial brain ultrasound | Hydrocephalus, cortical malformations, corpus callosum abnormalities |
Mega cisterna magna | 50–100% | 13.8–15% | Brain Ultrasound | Cortical malformations, ventriculomegaly, extra-CNS abnormalities | |
Aquired Cerebellar hypoplasia | 70–69% | 20–13% | 17–10% | MRI, trombophilic screening in haemorrhages | Ventriculomegaly, contralateral pons atrophy |
Domain | 1–3 Years | Pre School Age (4–6 Years) | School Age (7–11 Years) | Adolescence (12–16 Years) |
---|---|---|---|---|
Cognitive functions | -Bayley Scales III (cognitive score) -Griffiths Scales III | -WPPSI-III/IV 1 | -WISC IV/V 2 | -WISC IV/V 2 |
Gross motor functions | -Bayley Scales III (gross motor score) -Griffiths Scales III (gross motor quotient) | -Movement ABC II | -Movement ABC II | -Movement ABC II |
Fine motor/visuo-perceptual functions | -Bayley Scales III (fine-motor score) -Griffiths Scales III (eye-hand quotient) -Visual Motor Integration Test (VMI) * | -Visual Motor Integration Test (VMI) -WPPSI III/IV 1 Visual Spatial Index (VSI) | -Visual Motor Integration Test (VMI) -WISC-IV/V 2 Visual Spatial Index (VSI) | -Visual Motor Integration Test (VMI) -WISC-IV/V 2 Visual Spatial Index (VSI) |
Language | -Bayley III (expressive and receptive language scores) -The MacArthur-Bates Communicative Development Inventories (MB-CDIs) | -WPPSI-III/IV 1 Verbal IQ/Verbal Comprehension Index and (VCI) Vocabulary Acquisition Index (VAI) | -WISC IV/V 2 Verbal IQ/Verbal Comprehension Index (VCI) | -WISC IV/V 2 Verbal IQ/Verbal Comprehension Index (VCI) |
Behavior and emotional screening | -SDQ 3 parent questionnaire * | -SDQ 3 parents and teachers questionnaires 3 | -SDQ 3 parents and teachers questionnaires | -SDQ 3 parents, teachers, and self-report questionnaires |
Autism Spectrum Disorders/internalizing behaviors | -Modified Checklist for Autism in Toddlers revised (M-CHAT-R questionnaire) —CBCL 4 questionnaire ADOS-2 5. | -CBCL 4 parents and teachers questionnaire— ADOS-2 5 | -CBCL 4 questionnaire-parents and teachers —ADOS-2 5 | -CBCL 4 questionnaire parents, teachers, and self-report —ADOS-2 5 |
ADHD | -Clinical observation -CBCL 4 | -Clinical observation -CBCL 4 | -Conners 3 questionnaire parents and teachers | -Conners 3 questionnaire parents, teachers, and self-report |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scelsa, B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics 2022, 12, 3083. https://doi.org/10.3390/diagnostics12123083
Scelsa B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics. 2022; 12(12):3083. https://doi.org/10.3390/diagnostics12123083
Chicago/Turabian StyleScelsa, Barbara. 2022. "Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up" Diagnostics 12, no. 12: 3083. https://doi.org/10.3390/diagnostics12123083
APA StyleScelsa, B. (2022). Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics, 12(12), 3083. https://doi.org/10.3390/diagnostics12123083