The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Endpoints
2.3.1. Primary Endpoint
2.3.2. Secondary Endpoint
2.4. Study Design
2.5. Procedure
2.6. Data Collection
3. Results
3.1. Baseline Features of Study Patients
3.2. Lesion Characteristics
3.3. Pre-Procedural Planning
3.4. Procedure Data
3.5. Adverse Events
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meza, R.; Jeon, J.; Toumazis, I.; Haaf, K.T.; Cao, P.; Bastani, M.; Han, S.S.; Blom, E.F.; Jonas, D.; Feuer, E.J.; et al. Evaluation of the Benefits and Harms of Lung Cancer Screening With Low-Dose Computed Tomography: Modeling Study for the US Preventive Services Task Force. JAMA 2021, 325, 988–997. [Google Scholar] [CrossRef]
- Wahidi, M.M.; Herth, F.; Yasufuku, K.; Shepherd, R.W.; Yarmus, L.; Chawla, M.; Lamb, C.; Casey, K.R.; Patel, S.; Silvestri, G.A.; et al. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 816–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, E.E.; Labarca, G.; Ospina-Delgado, D.; Kheir, F.; Majid, A.; Khandhar, S.J.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis: Systematic Review and Meta-analysis. Chest 2020, 158, 1753–1769. [Google Scholar] [CrossRef]
- Chen, A.C.; Pastis, N.J., Jr.; Mahajan, A.K.; Khandhar, S.J.; Simoff, M.J.; Machuzak, M.S.; Cicenia, J.; Gildea, T.R.; Silvestri, G.A. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2021, 159, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, M.A.; Schampaert, S.; de Groot, J.A.H.; Schirmer, C.C.; van der Bom, I. Cone-Beam CT With Augmented Fluoroscopy Combined With Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2018, 25, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Sethi, J.; Taneja, A.; Musani, A.; Maldonado, F. Computed Tomography Bronchus Sign and the Diagnostic Yield of Guided Bronchoscopy for Peripheral Pulmonary Lesions. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Chaddha, U.; Kovacs, S.P.; Manley, C.; Hogarth, D.K.; Cumbo-Nacheli, G.; Bhavani, S.V.; Kumar, R.; Shende, M.; Egan, J.P.; Murgu, S. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm. Med. 2019, 19, 243. [Google Scholar] [CrossRef] [Green Version]
- Seijo, L.M.; de Torres, J.P.; Lozano, M.D.; Bastarrika, G.; Alcaide, A.B.; Lacunza, M.M.; Zulueta, J.J. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: Results from a prospective study. Chest 2010, 138, 1316–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2018, 14, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Callister, M.E.J.; Baldwin, D.R.; Akram, A.R.; Barnard, S.; Cane, P.; Draffan, J.; Franks, K.; Gleeson, F.; Graham, R.; Malhotra, P.; et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax 2015, 70 (Suppl. 2), ii1–ii54. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, N.; Yamazaki, K.; Onodera, Y.; Asahina, H.; Kikuchi, E.; Asano, F.; Miyasaka, K.; Nishimura, M. Factors Related to Diagnostic Sensitivity Using an Ultrathin Bronchoscope Under CT Guidance. Chest 2007, 131, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Folch, E.E.; Mahajan, A.K.; Oberg, C.L.; Maldonado, F.; Toloza, E.; Krimsky, W.S.; Oh, S.; Bowling, M.R.; Benzaquen, S.; Kinsey, C.M.; et al. Standardized Definitions of Bleeding After Transbronchial Lung Biopsy: A Delphi Consensus Statement From the Nashville Working Group. Chest 2020, 158, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Gillespie, C.T. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann. Thorac. Surg. 2018, 106, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.C.; Pastis, N.J.; Machuzak, M.S.; Gildea, T.R.; Simoff, M.J.; Gillespie, C.T.; Mahajan, A.K.; Oh, S.S.; Silvestri, G.A. Accuracy of a Robotic Endoscopic System in Cadaver Models with Simulated Tumor Targets: ACCESS Study. Respiration 2019, 99, 56–61. [Google Scholar] [CrossRef]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Brownback, K.R.; Quijano, F.; Latham, H.E.; Simpson, S.Q. Electromagnetic Navigational Bronchoscopy in the Diagnosis of Lung Lesions. J. Bronchol. Interv. Pulmonol. 2012, 19, 91–97. [Google Scholar] [CrossRef]
- Hsia, D.W.; Jensen, K.W.; Curran-Everett, D.; Musani, A.I. Diagnosis of lung nodules with peripheral/radial endobronchial ultrasound-guided transbronchial biopsy. J. Bronchol. Interv. Pulmonol. 2012, 19, 5–11. [Google Scholar] [CrossRef]
- Hall, S.M.; Hislop, A.A.; Pierce, C.M.; Haworth, S.G. Prenatal origins of human intrapulmonary arteries: Formation and smooth muscle maturation. Am. J. Respir. Cell Mol. Biol. 2000, 23, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Loosli, C.G.; Potter, E.L. Pre-and postnatal development of the respiratory portion of the human lung with special reference to the elastic fibers. Am. Rev. Respir. Dis. 1959, 80, 5–23. [Google Scholar]
- Sun, J.; Criner, G.J.; Dibardino, D.; Li, S.; Nader, D.; Lam, B.; Kopas, L.; Wahidi, M.M.; Majid, A.; Marron, R.; et al. Efficacy and safety of virtual bronchoscopic navigation with fused fluoroscopy and vessel mapping for access of pulmonary lesions. Respirology 2022, 27, 357–365. [Google Scholar] [CrossRef]
- Akulian, J.; Molena, D.; Wahidi, M.; Chen, A.; Yu, D.; Maldonado, F.; Lee, H.; Vachani, A.; Yarmus, L. A Direct Comparative Study of Bronchoscopic Navigation Planning Platforms for Peripheral Lung Navigation: The ATLAS Study. J. Bronchol. Interv. Pulmonol. 2022, 29, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, M.A. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J. Bronchol. Interv. Pulmonol. 2021, 28, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Cho, R.J.; Senitko, M.; Wong, J.; Dincer, E.H.; Khosravi, H.; Abraham, G.E., 3rd. Feasibility of Using the O-Arm Imaging System During ENB-rEBUS-guided Peripheral Lung Biopsy: A Dual-center Experience. J. Bronchol. Interv. Pulmonol. 2021, 28, 248–254. [Google Scholar] [CrossRef] [PubMed]
Demographics and Lesion Characteristics | N = 30 |
---|---|
Mean Age (IQR) | 68 (40–89) |
Gender | |
Male (%) | 11 (37%) |
Female (%) | 19 (63%) |
Lesion Location | |
Right Upper Lobe (%) | 11 (37%) |
Right Middle Lobe (%) | 5 (17%) |
Right Lower Lobe (%) | 3 (10%) |
Left Upper Lobe (%) | 8 (27%) |
Left Lower Lobe (%) | 3 (10%) |
Distance from Pleura (mm) | 5 (0–34) |
Lesion appearance | |
Solid (%) | 11 (37%) |
Ground Glass (%) | 15 (50%) |
Mixed (%) | 4 (13%) |
Lesion Size | |
≤20 mm (%) | 17 (57%) |
21–30 mm (%) | 12 (40%) |
>30 mm (%) | 1 (3%) |
Navigation Success and r-EBUS View | N = 30 |
---|---|
Successful Navigation (%) | 29 (97%) |
r-EBUS view | |
Concentric (%) | 14 (47%) |
Eccentric (%) | 13 (43%) |
No View (%) | 3 (10%) |
Complications | N = 30 |
---|---|
Pneumothorax (%) | 1 (3%) |
Bleeding (%) | 1 (3%) Grade 1–0 (0%) Grade 2–1 (3%) Grade 3–0 (0%) Grade 4–0 (0%) |
Respiratory Failure | 0 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, E.; Cho, R.J.; Keenan, J.C.; Murgu, S. The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling. Diagnostics 2022, 12, 3059. https://doi.org/10.3390/diagnostics12123059
Ho E, Cho RJ, Keenan JC, Murgu S. The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling. Diagnostics. 2022; 12(12):3059. https://doi.org/10.3390/diagnostics12123059
Chicago/Turabian StyleHo, Elliot, Roy Joseph Cho, Joseph C. Keenan, and Septimiu Murgu. 2022. "The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling" Diagnostics 12, no. 12: 3059. https://doi.org/10.3390/diagnostics12123059
APA StyleHo, E., Cho, R. J., Keenan, J. C., & Murgu, S. (2022). The Feasibility of Using the “Artery Sign” for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling. Diagnostics, 12(12), 3059. https://doi.org/10.3390/diagnostics12123059