Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biomarkers for Diagnosis and Differential Diagnosis of iNPH
3.1.1. Established AD Biomarkers: Tau Proteins and Beta-Amyloid
3.1.2. Emerging CSF Biomarkers in iNPH
3.2. Possible Correlations of Biomarker Concentrations with Severity of Symptoms, Prognosis, Tap Test and Shunt Responsiveness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rekate, H.L. A contemporary definition and classification of hydrocephalus. Semin. Pediatr. Neurol. 2009, 16, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, V.; Vanninen, R.; Rauramaa, T. Cerebrospinal fluid circulation and hydrocephalus. Handb. Clin. Neurol. 2017, 145, 39–50. [Google Scholar] [CrossRef]
- Ransohoff, J.; Shulman, K.; Fishman, R.A. Hydrocephalus: A review of etiology and treatment. J. Pediatr. 1960, 56, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.; Nitrini, R.; Roman, G.C. Normal-pressure hydrocephalus: A critical review. Dement. Neuropsychol. 2019, 13, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Skalicky, P.; Mladek, A.; Vlasak, A.; De Lacy, P.; Benes, V.; Bradac, O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg. Rev. 2020, 43, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.D.; Fisher, C.M.; Hakim, S.; Ojemann, R.G.; Sweet, W.H. Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: A treatable syndrome. N. Engl. J. Med. 1965, 273, 117–126. [Google Scholar] [CrossRef]
- Hakim, S.; Adams, R.D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 1965, 2, 307–327. [Google Scholar] [CrossRef]
- Damasceno, B.P. Neuroimaging in normal pressure hydrocephalus. Dement. Neuropsychol. 2015, 9, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Kockum, K.; Lilja-Lund, O.; Larsson, E.M.; Rosell, M.; Soderstrom, L.; Virhammar, J.; Laurell, K. The idiopathic normal-pressure hydrocephalus Radscale: A radiological scale for structured evaluation. Eur. J. Neurol. 2018, 25, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Pyrgelis, E.S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Velonakis, G.; Stefanis, L.; Kapaki, E. Callosal Angle Sub-Score of the Radscale in Patients with Idiopathic Normal Pressure Hydrocephalus Is Associated with Positive Tap Test Response. J. Clin. Med. 2022, 11, 2898. [Google Scholar] [CrossRef] [PubMed]
- Relkin, N.; Marmarou, A.; Klinge, P.; Bergsneider, M.; Black, P.M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57, S4–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kockum, K.; Larsson, E.-M.; Lilja-Lund, O.; Rosell, M.; Söderström, L.; Virhammar, J.; Laurell, K. The NPH radscale; a new radiological scale for evaluation of suspected normal pressure hydrocephalus. Fluids Barriers CNS 2015, 12, P27. [Google Scholar] [CrossRef] [Green Version]
- Capone, P.M.; Bertelson, J.A.; Ajtai, B. Neuroimaging of Normal Pressure Hydrocephalus and Hydrocephalus. Neurol. Clin. 2020, 38, 171–183. [Google Scholar] [CrossRef]
- Mori, E.; Ishikawa, M.; Kato, T.; Kazui, H.; Miyake, H.; Miyajima, M.; Nakajima, M.; Hashimoto, M.; Kuriyama, N.; Tokuda, T.; et al. Guidelines for management of idiopathic normal pressure hydrocephalus: Second edition. Neurol. Med. Chir. 2012, 52, 775–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, W.G. Normal pressure hydrocephalus: New concepts on etiology and diagnosis. AJNR. Am. J. Neuroradiol. 2000, 21, 1586–1590. [Google Scholar]
- Ammar, A.; Abbas, F.; Al Issawi, W.; Fakhro, F.; Batarfi, L.; Hendam, A.; Hasen, M.; El Shawarby, M.; Al Jehani, H. Idiopathic Normal-Pressure Hydrocephalus Syndrome: Is It Understood? The Comprehensive Idiopathic Normal-Pressure Hydrocephalus Theory (CiNPHT). In Hydrocephalus: What Do We Know? And What Do We Still Not Know? Ammar, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–82. [Google Scholar]
- Mihalj, M.; Dolic, K.; Kolic, K.; Ledenko, V. CSF tap test—Obsolete or appropriate test for predicting shunt responsiveness? A systemic review. J. Neurol. Sci. 2016, 362, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Krauss, J.K.; Regel, J.P.; Vach, W.; Droste, D.W.; Borremans, J.J.; Mergner, T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke 1996, 27, 24–29. [Google Scholar] [CrossRef]
- Graff-Radford, N.R.; Knopman, D.S.; Penman, A.D.; Coker, L.H.; Mosley, T.H. Do systolic BP and pulse pressure relate to ventricular enlargement? Eur. J. Neurol. 2013, 20, 720–724. [Google Scholar] [CrossRef]
- Hooglugt, A.; Klatt, O.; Huveneers, S. Vascular stiffening and endothelial dysfunction in atherosclerosis. Curr. Opin. Lipidol. 2022, 33, 353–363. [Google Scholar] [CrossRef]
- Kitagaki, H.; Mori, E.; Ishii, K.; Yamaji, S.; Hirono, N.; Imamura, T. CSF spaces in idiopathic normal pressure hydrocephalus: Morphology and volumetry. AJNR. Am. J. Neuroradiol. 1998, 19, 1277–1284. [Google Scholar]
- Siraj, S. An overview of normal pressure hydrocephalus and its importance: How much do we really know? J. Am. Med. Dir. Assoc. 2011, 12, 19–21. [Google Scholar] [CrossRef]
- Silverberg, G.D.; Mayo, M.; Saul, T.; Rubenstein, E.; McGuire, D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: A hypothesis. Lancet. Neurol. 2003, 2, 506–511. [Google Scholar] [CrossRef]
- Silverberg, G.D.; Mayo, M.; Saul, T.; Fellmann, J.; Carvalho, J.; McGuire, D. Continuous CSF drainage in AD: Results of a double-blind, randomized, placebo-controlled study. Neurology 2008, 71, 202–209. [Google Scholar] [CrossRef]
- Del Bigio, M.R.; Cardoso, E.R.; Halliday, W.C. Neuropathological changes in chronic adult hydrocephalus: Cortical biopsies and autopsy findings. Can. J. Neurol. Sci. 1997, 24, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Savolainen, S.; Paljarvi, L.; Vapalahti, M. Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: A clinical and neuropathological study. Acta Neurochir. 1999, 141, 849–853. [Google Scholar] [CrossRef]
- Golomb, J.; Wisoff, J.; Miller, D.C.; Boksay, I.; Kluger, A.; Weiner, H.; Salton, J.; Graves, W. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: Prevalence and shunt response. J. Neurol. Neurosurg. Psychiatry 2000, 68, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Bech-Azeddine, R.; Hogh, P.; Juhler, M.; Gjerris, F.; Waldemar, G. Idiopathic normal-pressure hydrocephalus: Clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J. Neurol. Neurosurg. Psychiatry 2007, 78, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, V.; Alafuzoff, I.; Aalto, S.; Suotunen, T.; Savolainen, S.; Nagren, K.; Tapiola, T.; Pirttila, T.; Rinne, J.; Jaaskelainen, J.E.; et al. Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch. Neurol. 2008, 65, 1304–1309. [Google Scholar] [CrossRef]
- Biscetti, L.; Salvadori, N.; Farotti, L.; Cataldi, S.; Eusebi, P.; Paciotti, S.; Parnetti, L. The added value of Abeta42/Abeta40 in the CSF signature for routine diagnostics of Alzheimer’s disease. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 494, 71–73. [Google Scholar] [CrossRef]
- Blennow, K.; Hampel, H. CSF markers for incipient Alzheimer’s disease. Lancet. Neurol. 2003, 2, 605–613. [Google Scholar] [CrossRef]
- van Harten, A.C.; Kester, M.I.; Visser, P.J.; Blankenstein, M.A.; Pijnenburg, Y.A.; van der Flier, W.M.; Scheltens, P. Tau and p-tau as CSF biomarkers in dementia: A meta-analysis. Clin. Chem. Lab. Med. 2011, 49, 353–366. [Google Scholar] [CrossRef]
- Murphy, M.P.; LeVine, H., 3rd. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimer’s Dis. JAD 2010, 19, 311–323. [Google Scholar] [CrossRef]
- Kudo, T.; Mima, T.; Hashimoto, R.; Nakao, K.; Morihara, T.; Tanimukai, H.; Tsujio, I.; Koike, Y.; Tagami, S.; Mori, H.; et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin. Neurosci. 2000, 54, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Lins, H.; Wichart, I.; Bancher, C.; Wallesch, C.W.; Jellinger, K.A.; Rosler, N. Immunoreactivities of amyloid beta peptide((1-42)) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J. Neural Transm. 2004, 111, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Kapaki, E.N.; Paraskevas, G.P.; Tzerakis, N.G.; Sfagos, C.; Seretis, A.; Kararizou, E.; Vassilopoulos, D. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: A discrimination from Alzheimer’s disease. Eur. J. Neurol. 2007, 14, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Agren-Wilsson, A.; Lekman, A.; Sjoberg, W.; Rosengren, L.; Blennow, K.; Bergenheim, A.T.; Malm, J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol. Scand. 2007, 116, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ray, B.; Reyes, P.F.; Lahiri, D.K. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: Change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Abeta) peptide and phospho-tau. J. Psychiatr. Res. 2011, 45, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Jeppsson, A.; Zetterberg, H.; Blennow, K.; Wikkelso, C. Idiopathic normal-pressure hydrocephalus: Pathophysiology and diagnosis by CSF biomarkers. Neurology 2013, 80, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, M.; Nakajima, M.; Ogino, I.; Miyata, H.; Motoi, Y.; Arai, H. Soluble amyloid precursor protein alpha in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur. J. Neurol. 2013, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.; Malek-Ahmadi, M.; Kahlon, V.; Sabbagh, M.N. Differences in Cerebrospinal Fluid Biomarkers between Clinically Diagnosed Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. J. Alzheimer’s Dis. Park. 2014, 4, 1000150. [Google Scholar] [CrossRef] [Green Version]
- Schirinzi, T.; Sancesario, G.M.; Ialongo, C.; Imbriani, P.; Madeo, G.; Toniolo, S.; Martorana, A.; Pisani, A. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front. Neurol. 2015, 6, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santangelo, R.; Cecchetti, G.; Bernasconi, M.P.; Cardamone, R.; Barbieri, A.; Pinto, P.; Passerini, G.; Scomazzoni, F.; Comi, G.; Magnani, G. Cerebrospinal Fluid Amyloid-beta 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2017, 60, 183–200. [Google Scholar] [CrossRef]
- Jeppsson, A.; Wikkelso, C.; Blennow, K.; Zetterberg, H.; Constantinescu, R.; Remes, A.M.; Herukka, S.K.; Rauramaa, T.; Nagga, K.; Leinonen, V.; et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1117–1123. [Google Scholar] [CrossRef]
- Taghdiri, F.; Gumus, M.; Algarni, M.; Fasano, A.; Tang-Wai, D.; Tartaglia, M.C. Association Between Cerebrospinal Fluid Biomarkers and Age-related Brain Changes in Patients with Normal Pressure Hydrocephalus. Sci. Rep. 2020, 10, 9106. [Google Scholar] [CrossRef] [PubMed]
- Akiba, C.; Nakajima, M.; Miyajima, M.; Ogino, I.; Motoi, Y.; Kawamura, K.; Adachi, S.; Kondo, A.; Sugano, H.; Tokuda, T.; et al. Change of Amyloid-beta 1-42 Toxic Conformer Ratio After Cerebrospinal Fluid Diversion Predicts Long-Term Cognitive Outcome in Patients with Idiopathic Normal Pressure Hydrocephalus. J. Alzheimer’s Dis. JAD 2018, 63, 989–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manniche, C.; Simonsen, A.H.; Hasselbalch, S.G.; Andreasson, U.; Zetterberg, H.; Blennow, K.; Hogh, P.; Juhler, M.; Hejl, A.M. Cerebrospinal Fluid Biomarkers to Differentiate Idiopathic Normal Pressure Hydrocephalus from Subcortical Ischemic Vascular Disease. J. Alzheimer’s Dis. JAD 2020, 75, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M.; Kaya, D.; Yavuz, I.; Dost, F.S.; Altun, Z.S.; Isik, A.T. A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias. Clin. Interv. Aging 2022, 17, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, S.; Emiliani, F.; Bagnoli, S.; Padiglioni, S.; Del Re, L.M.; Giacomucci, G.; Balestrini, J.; Ingannato, A.; Moschini, V.; Morinelli, C.; et al. Alzheimer’s Disease CSF Biomarker Profiles in Idiopathic Normal Pressure Hydrocephalus. J. Pers. Med. 2022, 12, 935. [Google Scholar] [CrossRef]
- Jeppsson, A.; Bjerke, M.; Hellstrom, P.; Blennow, K.; Zetterberg, H.; Kettunen, P.; Wikkelso, C.; Wallin, A.; Tullberg, M. Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease. Front. Neurol. 2022, 13, 839307. [Google Scholar] [CrossRef]
- Jingami, N.; Asada-Utsugi, M.; Uemura, K.; Noto, R.; Takahashi, M.; Ozaki, A.; Kihara, T.; Kageyama, T.; Takahashi, R.; Shimohama, S.; et al. Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer's disease. J. Alzheimer'sDis. JAD 2015, 45, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, P.N.; Cleveland, D.W.; Griffin, J.W.; Landes, P.W.; Cowan, N.J.; Price, D.L. Neurofilament gene expression: A major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 1987, 84, 3472–3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Pyykko, O.T.; Lumela, M.; Rummukainen, J.; Nerg, O.; Seppala, T.T.; Herukka, S.K.; Koivisto, A.M.; Alafuzoff, I.; Puli, L.; Savolainen, S.; et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS ONE 2014, 9, e91974. [Google Scholar] [CrossRef] [PubMed]
- Tullberg, M.; Blennow, K.; Mansson, J.E.; Fredman, P.; Tisell, M.; Wikkelso, C. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cereb. Fluid Res. 2008, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tullberg, M.; Blennow, K.; Mansson, J.E.; Fredman, P.; Tisell, M.; Wikkelso, C. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur. J. Neurol. 2007, 14, 248–254. [Google Scholar] [CrossRef]
- Tullberg, M.; Rosengren, L.; Blomsterwall, E.; Karlsson, J.E.; Wikkelso, C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 1998, 50, 1122–1127. [Google Scholar] [CrossRef]
- Jeppsson, A.; Holtta, M.; Zetterberg, H.; Blennow, K.; Wikkelso, C.; Tullberg, M. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016, 13, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, L.F.; Ghirnikar, R.S.; Lee, Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 2000, 25, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Albrechtsen, M.; Sorensen, P.S.; Gjerris, F.; Bock, E. High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J. Neurol. Sci. 1985, 70, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Tullberg, M.; Mansson, J.E.; Fredman, P.; Lekman, A.; Blennow, K.; Ekman, R.; Rosengren, L.E.; Tisell, M.; Wikkelso, C. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J. Neurol. Neurosurg. Psychiatry 2000, 69, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Miyajima, M.; Jiang, C.; Arai, H. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci. Lett. 2007, 413, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Sosvorova, L.; Mohapl, M.; Vcelak, J.; Hill, M.; Vitku, J.; Hampl, R. The impact of selected cytokines in the follow-up of normal pressure hydrocephalus. Physiol. Res. 2015, 64, S283–S290. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Miyajima, M.; Ogino, I.; Watanabe, M.; Miyata, H.; Karagiozov, K.L.; Arai, H.; Hagiwara, Y.; Segawa, T.; Kobayashi, K.; et al. Leucine-rich alpha-2-glycoprotein is a marker for idiopathic normal pressure hydrocephalus. Acta Neurochir. 2011, 153, 1339–1346; discussion 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, M.; Arai, H.; Miyajima, M. Diagnostic value of CSF biomarker profile in idiopathic normal pressure hydrocephalus; leucine-rich alpha-2-glycoprotein is a potential biological marker. Rinsho Shinkeigaku = Clin. Neurol. 2010, 50, 973–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Miyajima, M.; Mineki, R.; Taka, H.; Murayama, K.; Arai, H. Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir. 2006, 148, 859–864; discussion 864. [Google Scholar] [CrossRef] [PubMed]
- Mase, M.; Yamada, K.; Shimazu, N.; Seiki, K.; Oda, H.; Nakau, H.; Inui, T.; Li, W.; Eguchi, N.; Urade, Y. Lipocalin-type prostaglandin D synthase (beta-trace) in cerebrospinal fluid: A useful marker for the diagnosis of normal pressure hydrocephalus. Neurosci. Res. 2003, 47, 455–459. [Google Scholar] [CrossRef]
- Brettschneider, J.; Riepe, M.W.; Petereit, H.F.; Ludolph, A.C.; Tumani, H. Meningeal derived cerebrospinal fluid proteins in different forms of dementia: Is a meningopathy involved in normal pressure hydrocephalus? J. Neurol. Neurosurg. Psychiatry 2004, 75, 1614–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omlin, F.X.; Webster, H.D.; Palkovits, C.G.; Cohen, S.R. Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J. Cell Biol. 1982, 95, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selhub, J.; Miller, J.W. The pathogenesis of homocysteinemia: Interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 1992, 55, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Sosvorova, L.; Bestak, J.; Bicikova, M.; Mohapl, M.; Hill, M.; Kubatova, J.; Hampl, R. Determination of homocysteine in cerebrospinal fluid as an indicator for surgery treatment in patients with hydrocefalus. Physiol. Res. 2014, 63, 521–527. [Google Scholar] [CrossRef]
- Frischknecht, R.; Chang, K.J.; Rasband, M.N.; Seidenbecher, C.I. Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog. Brain Res. 2014, 214, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Minta, K.; Jeppsson, A.; Brinkmalm, G.; Portelius, E.; Zetterberg, H.; Blennow, K.; Tullberg, M.; Andreasson, U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Simoes, G.; Pereira, T.; Caseiro, A. Matrix metaloproteinases in vascular pathology. Microvasc. Res. 2022, 143, 104398. [Google Scholar] [CrossRef]
- Minta, K.; Brinkmalm, G.; Al Nimer, F.; Thelin, E.P.; Piehl, F.; Tullberg, M.; Jeppsson, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; et al. Dynamics of cerebrospinal fluid concentrations of matrix metalloproteinases in human traumatic brain injury. Sci. Rep. 2020, 10, 18075. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Khan, S.; Rahman, S.; Singh, L.R. The Extracellular Protein, Transthyretin Is an Oxidative Stress Biomarker. Front. Physiol. 2019, 10, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloeckner, S.F.; Meyne, F.; Wagner, F.; Heinemann, U.; Krasnianski, A.; Meissner, B.; Zerr, I. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J. Alzheimer’s Dis. JAD 2008, 14, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Futakawa, S.; Nara, K.; Miyajima, M.; Kuno, A.; Ito, H.; Kaji, H.; Shirotani, K.; Honda, T.; Tohyama, Y.; Hoshi, K.; et al. A unique N-glycan on human transferrin in CSF: A possible biomarker for iNPH. Neurobiol. Aging 2012, 33, 1807–1815. [Google Scholar] [CrossRef]
- Nagata, Y.; Hirayama, A.; Ikeda, S.; Shirahata, A.; Shoji, F.; Maruyama, M.; Kayano, M.; Bundo, M.; Hattori, K.; Yoshida, S.; et al. Comparative analysis of cerebrospinal fluid metabolites in Alzheimer’s disease and idiopathic normal pressure hydrocephalus in a Japanese cohort. Biomark. Res. 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.; Rauramaa, T.; Makinen, P.M.; Hiltunen, M.; Herukka, S.K.; Kokki, M.; Musialowicz, T.; Jyrkkanen, H.K.; Danner, N.; Junkkari, A.; et al. Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. Eur. J. Neurol. 2021, 28, 389–400. [Google Scholar] [CrossRef]
- Nagata, Y.; Bundo, M.; Sugiura, S.; Kamita, M.; Ono, M.; Hattori, K.; Yoshida, S.; Goto, Y.I.; Urakami, K.; Niida, S. PTPRQ as a potential biomarker for idiopathic normal pressure hydrocephalus. Mol. Med. Rep. 2017, 16, 3034–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graff-Radford, N.R.; Jones, D.T. Normal Pressure Hydrocephalus. Contin. Lifelong Learn. Neurol. 2019, 25, 165–186. [Google Scholar] [CrossRef]
- Lim, T.S.; Choi, J.Y.; Park, S.A.; Youn, Y.C.; Lee, H.Y.; Kim, B.G.; Joo, I.S.; Huh, K.; Moon, S.Y. Evaluation of coexistence of Alzheimer’s disease in idiopathic normal pressure hydrocephalus using ELISA analyses for CSF biomarkers. BMC Neurol. 2014, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Muller-Schmitz, K.; Krasavina-Loka, N.; Yardimci, T.; Lipka, T.; Kolman, A.G.J.; Robbers, S.; Menge, T.; Kujovic, M.; Seitz, R.J. Normal Pressure Hydrocephalus Associated with Alzheimer’s Disease. Ann. Neurol. 2020, 88, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Thavarajasingam, S.G.; El-Khatib, M.; Vemulapalli, K.V.; Iradukunda, H.A.S.; Laleye, J.; Russo, S.; Eichhorn, C.; Eide, P.K. Cerebrospinal fluid and venous biomarkers of shunt-responsive idiopathic normal pressure hydrocephalus: A systematic review and meta-analysis. Acta Neurochir. 2022, 164, 1719–1746. [Google Scholar] [CrossRef]
- Darrow, J.A.; Lewis, A.; Gulyani, S.; Khingelova, K.; Rao, A.; Wang, J.; Zhang, Y.; Luciano, M.; Yasar, S.; Moghekar, A. CSF Biomarkers Predict Gait Outcomes in Idiopathic Normal Pressure Hydrocephalus. Neurol. Clin. Pract. 2022, 12, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.C.; Huang, Y.C.; Chang, C.N.; Chen, J.L.; Hsu, C.C.; Lin, W.Y. Changes of cerebrospinal fluid protein concentrations and gait patterns in geriatric normal pressure hydrocephalus patients after ventriculoperitoneal shunting surgery. Exp. Gerontol. 2018, 106, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Scollato, A.; Terreni, A.; Caldini, A.; Salvadori, B.; Gallina, P.; Francese, S.; Mastrobuoni, G.; Pieraccini, G.; Moneti, G.; Bini, L.; et al. CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt: CSF biomarkers of response to surgical treatment. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2010, 31, 283–291. [Google Scholar] [CrossRef]
- Kang, K.; Ko, P.W.; Jin, M.; Suk, K.; Lee, H.W. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2014, 21, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Manniche, C.; Hejl, A.M.; Hasselbalch, S.G.; Simonsen, A.H. Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus versus Alzheimer’s Disease and Subcortical Ischemic Vascular Disease: A Systematic Review. J. Alzheimer’s Dis. JAD 2019, 68, 267–279. [Google Scholar] [CrossRef]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Kapaki, E.; Paraskevas, G.P.; Papageorgiou, S.G.; Bonakis, A.; Kalfakis, N.; Zalonis, I.; Vassilopoulos, D. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis. Assoc. Disord. 2008, 22, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, G.P.; Kapaki, E.; Papageorgiou, S.G.; Kalfakis, N.; Andreadou, E.; Zalonis, I.; Vassilopoulos, D. CSF biomarker profile and diagnostic value in vascular dementia. Eur. J. Neurol. 2009, 16, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, P.; Riederer, P.; O’Bryant, S.E.; Verbeek, M.M.; Dubois, B.; Visser, P.J.; Jellinger, K.A.; Engelborghs, S.; Ramirez, A.; Parnetti, L.; et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2018, 19, 244–328. [Google Scholar] [CrossRef] [Green Version]
- Paraskevas, G.P.; Bougea, A.; Constantinides, V.C.; Bourbouli, M.; Petropoulou, O.; Kapaki, E. In vivo Prevalence of Alzheimer Biomarkers in Dementia with Lewy Bodies. Dement. Geriatr. Cogn. Disord. 2019, 47, 289–296. [Google Scholar] [CrossRef]
- Kokkinou, M.; Beishon, L.C.; Smailagic, N.; Noel-Storr, A.H.; Hyde, C.; Ukoumunne, O.; Worrall, R.E.; Hayen, A.; Desai, M.; Ashok, A.H.; et al. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer’s disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst. Rev. 2021, 2, CD010945. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016, 87, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Wallin, A.; Kapaki, E.; Boban, M.; Engelborghs, S.; Hermann, D.M.; Huisa, B.; Jonsson, M.; Kramberger, M.G.; Lossi, L.; Malojcic, B.; et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease—A consensus report. BMC Neurol. 2017, 17, 102. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
iNPH | AD | VD | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
t-tau | p-tau | Aβ42 | t-tau | p-tau | Aβ42 | t-tau | p-tau | Aβ42 | |
↑ | na | na | na | na | na | na | na | na | [34] |
- | na | ↓ | ↑ | na | ↓ | - | na | - | [35] |
↑ | - | ↓ | ↑↑ | ↑ | ↓ | na | na | na | [36] |
↓↓ | ↓↓ | ↓↓ | na | na | na | ↓ | ↓ | ↓ | [37] |
- | -/↑ * | ↓ | na | na | na | na | na | na | [38] |
- | ↓ | - | ↑ | ↑ | - | na | na | na | [40] |
↓ | ↓ | ↓ | na | na | na | na | na | na | [39] |
↑† | ↓ | ↓ | ↑ | ↑ | ↓ | na | na | na | [41] |
↓† | ↓ | na | ↑ | ↑ | na | na | na | na | [51] |
↓ | ↓ | ↓ | ↑ | ↑ | ↓↓ | na | na | na | [42] |
- | - | ↓ | ↑ | ↑ | ↓ | - | - | - | [43] |
↓ | ↓ | ↓ | ↑↑ | ↑↑ | ↓↓ | ↑ | ↑ | ↓ | [44] |
↑ | ↓ | ↓ | ↑ | ↑ | ↓ | na | na | na | [45] |
↓↓ | ↓ | ↓↓ | ↑ | ↑ | ↓↓ | ↓ | ↓ | ↓ | [47] |
↓† | ↓ | ↑ | ↑ | ↑ | ↓ | na | na | na | [48] |
na | na | ↓↓ | na | na | na | na | na | ↓ | [50] |
↓† | ↓ | - | ↑ | ↑ | - | na | na | na | [49] |
CSF Biomarker | Clinical Correlation | Reference |
---|---|---|
t-tau high concentration | More severe symptoms | [34] |
p-tau high concentration | Worse cognitive prognosis | [46,49] |
p-tau high concentration | Longer disease duration (more than one year) | [38] |
p-tau low concentration | Worse gait difficulties | [89] |
APP-derived proteins increase in ventricular CSF | Shunt responder status | [39,82] |
sAPP concentration | Lower in shunt responsive iNPH than non-NPH patients | [54] |
Aβ42 concentrations low concentration | Worse cognitive impairment | [89] |
Aβ42 concentration | No effect on cognitive prognosis | [43] |
p-tau/Aβ42 high ratio | Shunt non-responder status | [89] |
p-tau/Aβ42 high ratio | Higher possibility to develop a neurodegenerative disease | [38] |
CSF biomarkers | No differences in any of them between responders and non-responders | [55] |
AD profile | No effect on shunt responsiveness | [27] |
AD profile | Negative effect to tap-test and shunt responsiveness | [83] |
AD profile | Better gait and cognitive improvement after CSF removal | [84] |
NFL high concentration | More extensive periventricular pathological density, worse: gait, balance, wakefulness and neuropsychological performance | [55,56,86] |
NFL low concentration | Long term kinetic improvement | [55,56,86] |
NFL reduction after shunt | Greater improvement in gait and balance | [55,56,86] |
LRG high concentration | Brain damage | [64] |
Homocysteine decrease after CSF removal | Greater symptoms improvement | [71] |
a2HS glycoprotein, a1antichimotrypsin and a1beta glycoprotein increased concentration | Shunt responder status | [87,88] |
GFAP, apolipoproteins (A-1, AIV, J and E), prostaglandin-H2 D-isomerase, Alpha-1-antitrypsin, serotransferrin complement C3c, anti-thrombin, a2 antiplasmin and albumin decreased concentration | Shunt responder status | [87,88] |
PTQRP low concentration | Shunt non-responder status | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrgelis, E.-S.; Boufidou, F.; Constantinides, V.C.; Papaioannou, M.; Papageorgiou, S.G.; Stefanis, L.; Paraskevas, G.P.; Kapaki, E. Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics 2022, 12, 2976. https://doi.org/10.3390/diagnostics12122976
Pyrgelis E-S, Boufidou F, Constantinides VC, Papaioannou M, Papageorgiou SG, Stefanis L, Paraskevas GP, Kapaki E. Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics. 2022; 12(12):2976. https://doi.org/10.3390/diagnostics12122976
Chicago/Turabian StylePyrgelis, Efstratios-Stylianos, Fotini Boufidou, Vasilios C. Constantinides, Myrto Papaioannou, Sokratis G. Papageorgiou, Leonidas Stefanis, George P. Paraskevas, and Elisabeth Kapaki. 2022. "Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review" Diagnostics 12, no. 12: 2976. https://doi.org/10.3390/diagnostics12122976
APA StylePyrgelis, E.-S., Boufidou, F., Constantinides, V. C., Papaioannou, M., Papageorgiou, S. G., Stefanis, L., Paraskevas, G. P., & Kapaki, E. (2022). Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics, 12(12), 2976. https://doi.org/10.3390/diagnostics12122976