Integrated Deep Learning and Supervised Machine Learning Model for Predictive Fetal Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Support Vector Machine
2.2. Random Forest
2.3. K-Means Clustering
2.4. Long Short-Term Memory Network
2.5. Data
3. Feature Extraction
4. Results
4.1. Classification
4.2. Ensemble Approach
4.3. Deep Learning
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, J.A.; Lindsay, B.G.; Derrick, E. Threshold of metabolic acidosis associated with newborn complications. Am. J. Obstet. Gynecol. 1997, 177, 1391–1394. [Google Scholar] [CrossRef]
- Clark, S.L.; Hamilton, E.F.; Garite, T.J.; Timmins, A.; Warrick, P.A.; Smith, S. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Am. J. Obstet. Gynecol. 2017, 216, 163.e1–163.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, A.; Moulden, M.; Redman, C.W. Umbilical cord gases in relation to the neonatal condition: The EveREst plot. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.W. Williams Obstetrics, 1st ed.; Appleton: New York, NY, USA, 1903. [Google Scholar]
- Regitz-Zagrosek, V.; Lundqvist, C.B.; Borghi, C.; Cifkova, R.; Ferreira, R.; Foidart, J.-M.; Gibbs, J.S.R.; Gohlke-Baerwolf, C.; Gorenek, B.; Iung, B.; et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: The Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur. Hear. J. 2011, 32, 3147–3197. [Google Scholar] [CrossRef] [Green Version]
- Signorini, M.; Magenes, G.; Cerutti, S.; Arduini, D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 2003, 50, 365–374. [Google Scholar] [CrossRef]
- van Geijn, H.P. 2 Developments in CTG analysis. Baillière s Clin. Obstet. Gynaecol. 1996, 10, 185–209. [Google Scholar] [CrossRef]
- MacDonald, D.; Grant, A.; Sheridan-Pereira, M.; Boylan, P.; Chalmers, I. The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am. J. Obstet. Gynecol. 1985, 152, 524–539. [Google Scholar] [CrossRef]
- Goddard, R. Electronic fetal monitoring. Is not necessary for low risk labours. BMJ 2001, 322, 1436–1437. [Google Scholar] [CrossRef]
- Rooth, G.; Huch, A.; Huch, R. Guidelines for the use of fetal monitoring. Int. J. Gynecol. Obstet. 1987, 25, 159–167. [Google Scholar]
- Bernardes, J.; Costa-Pereira, A.; Ayres-De-Campos, D.; Geijn, H.; Pereira-Leite, L. Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynecol. Obstet. 1997, 57, 33–37. [Google Scholar] [CrossRef]
- Palomäki, O.; Luukkaala, T.; Luoto, R.; Tuimala, R. Intrapartum cardiotocography—The dilemma of interpretational variation. J. Périnat. Med. 2006, 34, 298–302. [Google Scholar] [CrossRef]
- Chauhan, S.P.; Klauser, C.; Woodring, T.C.; Sanderson, M.; Magann, E.F.; Morrison, J.C. Intrapartum nonreassuring fetal heart rate tracing and prediction of adverse outcomes: Interobserver variability. Am. J. Obstet. Gynecol. 2008, 199, 623.e1–623.e5. [Google Scholar] [CrossRef] [PubMed]
- Ayres-De-Campos, D.; Costa-Santos, C.; Bernardes, J. Prediction of neonatal state by computer analysis of fetal heart rate tracings: The antepartum arm of the SisPorto® multicentre validation study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 118, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Beard, R.W.; Filshie, G.M.; Knight, C.A.; Roberts, G.M. The Significance of The Changes in The Continuous Fetal Heart Rate In The First Stage of Labour. BJOG Int. J. Obstet. Gynaecol. 1971, 78, 865–881. [Google Scholar] [CrossRef] [PubMed]
- Cahill, A.G.; Tuuli, M.G.; Stout, M.J.; López, J.D.; Macones, G.A. A prospective cohort study of fetal heart rate monitoring: Deceleration area is predictive of fetal acidemia. Am. J. Obstet. Gynecol. 2018, 218, 523.e1–523.e12. [Google Scholar] [CrossRef]
- Czabanski, R.; Jezewski, J.; Matonia, A. Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Expert Syst. Appl. 2012, 39, 11846–11860. [Google Scholar] [CrossRef]
- Keith, R.D.F.; Beckley, S.; Garibaldi, J.; Westgate, J.A.; Ifeachor, E.C.; Greene, K.R. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG: Int. J. Obstet. Gynaecol. 1995, 102, 688–700. [Google Scholar] [CrossRef]
- Arduini, D.; Giannini, F.; Magenes, G.; Signorini, M.G.; Meloni, P. Fuzzy logic in the management of new prenatal variables. In Proceedings of the 5th World Congress of Perinatal Medicine, Barcelona, Spain, 23–27 September 2001; pp. 1211–1216. [Google Scholar]
- Frize, M.; Ibrahim, D.; Seker, H.; Walker, R.; Odetayo, M.; Petrovic, D.; Naguib, R. Predicting Clinical Outcomes for Newborns Using Two Artificial Intelligence Approaches. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 26, pp. 3202–3205. [Google Scholar] [CrossRef]
- Leski, J. ε -Insensitive Learning Techniques For Approximate Reasoning Systems (Invited Paper). Int. J. Comput. Cogn. 2003, 1, 21–77. [Google Scholar]
- Nagendra, V.; Gude, H.; Sampath, D.; Corns, S.; Long, S. Evaluation of support vector machines and random forest classifiers in a real-time fetal monitoring system based on cardiotocography data. In Proceedings of the 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Manchester, UK, 23–25 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Warrick, P.A.; Hamilton, E.F.; Precup, D.; Kearney, R.E. Classification of Normal and Hypoxic Fetuses from Systems Modeling of Intrapartum Cardiotocography. IEEE Trans. Biomed. Eng. 2010, 57, 771–779. [Google Scholar] [CrossRef]
- Jallouli, M.; Arfaoui, S.; Ben Mabrouk, A.; Cattani, C. Clifford Wavelet Entropy for Fetal ECG Extraction. Entropy 2021, 23, 844. [Google Scholar] [CrossRef]
- Krupa, N.; Ma, M.A.; Zahedi, E.; Ahmed, S.; Hassan, F.M. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine. Biomed. Eng. Online 2011, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawes, G.S.; Houghton, C.R.S.; Redman, C.W.G.; Visser, G.H.A. Pattern of the normal human fetal heart rate. BJOG Int. J. Obstet. Gynaecol. 1982, 89, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Norén, H.; Carlsson, A. Reduced prevalence of metabolic acidosis at birth: An analysis of established STAN usage in the total population of deliveries in a Swedish district hospital. Am. J. Obstet. Gynecol. 2010, 202, 546.e1–546.e7. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vos, G.S.; Wolterink, J.M.; de Jong, P.A.; Viergeyer, M.A.; Išgum, I. 2D image classification for 3D anatomy localization: Employing deep convolutional neural networks. In Proceedings of the Medical Imaging 2016: Image Processing, San Diego, CA, USA, 28 February 2016–2 March 2016; Volume 2016, p. 9784. [Google Scholar]
- Chen, X.; Xu, Y.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Glaucoma detection based on deep convolutional neural network. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 715–718. [Google Scholar] [CrossRef]
- Dubrovina, A.; Kisilev, P.; Ginsburg, B.; Hashoul, S.; Kimmel, R. Computational mammography using deep neural networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 6, 243–247. [Google Scholar] [CrossRef]
- Abdel-Zaher, A.M.; Eldeib, A.M. Breast cancer classification using deep belief networks. Expert Syst. Appl. 2016, 46, 139–144. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415–416, 190–198. [Google Scholar] [CrossRef]
- Meena, T.; Roy, S. Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift. Diagnostics 2022, 12, 2420. [Google Scholar] [CrossRef]
- Roy, S.; Meena, T.; Lim, S.-J. Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine. Diagnostics 2022, 12, 2549. [Google Scholar] [CrossRef]
- Petrozziello, A.; Jordanov, I.; Papageorghiou, T.A.; Redman, W.C.; Georgieva, A. Deep Learning for Continuous Electronic Fetal Monitoring in Labor. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 5866–5869. [Google Scholar] [CrossRef]
- Feng, G.; Quirk, J.G.; Djuric, P.M. Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20–21 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Maragatham, G.; Devi, S. LSTM Model for Prediction of Heart Failure in Big Data. J. Med. Syst. 2019, 43, 111. [Google Scholar] [CrossRef] [PubMed]
- Ocak, H. A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being. J. Med Syst. 2013, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taskin, K.; Ismail, C. Downe, and for the FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. International Journal of Gynecology and Obstetrics FIGO GUIDELINES FIGO consensus guidelines on intrapartum fetal monitoring: Intermittent auscultation. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar]
- Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.; Downe, S.; Panel, F.I.F.M.E.C. FIGO consensus guidelines on intrapartum fetal monitoring: Intermittent auscultation. Int. J. Gynecol. Obstet. 2015, 131, 9–12. [Google Scholar] [CrossRef] [PubMed]
Kernel | Function (x, xj) |
---|---|
Linear | xTxj |
Polynomial | (γ xT xj + r)d, γ > 0 |
Gaussian RBF | exp(−||x − xj||2/2γ2) |
Performance Metrics | SVM | RF | NN |
---|---|---|---|
Accuracy | 72.22 | 66.67 | 69.85 |
Sensitivity | 66.66 | 50.00 | 58.33 |
Specificity | 85.71 | 83.33 | 83.33 |
Precision | 67.77 | 60.89 | 69.67 |
Combination | No of Samples Classified (24) | Accuracy |
---|---|---|
NN/SVM | 18 | 71.42 |
NN/Clu | 21 | 80.95 |
RF/NN | 20 | 85.12 |
RF/Clu | 22 | 81.81 |
SVM/Clu | 17 | 82.35 |
NN/RF/SVM | 15 | 86.67 |
NN/RF/Clu | 14 | 85.71 |
RF/SVM/Clu | 16 | 87.50 |
NN/Clu/SVM | 17 | 88.24 |
NN/RF/Clu/SVM | 13 | 92.30 |
Layers | Output |
---|---|
Input Layer | (None, 1, 1500) |
LSTM Layer | (None, 10) |
Dropout Layer | (None, 10) |
Dense Layer | (None, 2) |
Dense Layer | (None, 1) |
Forecasts | 1 |
Layers | Output |
---|---|
Input Layer | (None, 1, 2000) |
LSTM Layer | (None, 10) |
Dropout Layer | (None, 10) |
Dense Layer | (None, 1) |
Forecasts | 1 |
Measure | FHR | UC |
---|---|---|
Testing RMSE | 7.6314 | 5.5155 |
Testing MAE | 6.2494 | 3.9329 |
Validation RMSE | 5.3828 | 6.4757 |
Validation MAE | 4.0908 | 5.2563 |
Layers | Output |
---|---|
Input Layer | (None, 1, 1000) |
LSTM Layer | (None, 10) |
Dense Layer | (None, 1) |
Forecasts | 1 |
Layers | Output |
---|---|
Input Layer | (None, 1, 800) |
LSTM Layer | (None, 10) |
Dropout Layer | (None, 10) |
Dense Layer | (None, 1) |
Forecasts | 1 |
Measure | FHR | UC |
---|---|---|
Testing RMSE | 4.7568 | 1.1126 |
Testing MAE | 3.7265 | 0.8337 |
Validation RMSE | 4.7704 | 4.1983 |
Validation MAE | 3.9593 | 3.2487 |
Measure | Non-Acidosis (0) | Acidosis (1) | ||
---|---|---|---|---|
2 min (480 Time Steps) | 4 min (960 Time Steps) | 2 min (480 Time Steps) | 4 min (960 Time Steps) | |
RF | 0 | 0 | 1 | 1 |
NN | 0 | 0 | 1 | 0 |
Ensemble output | 0 | 0 | 1 | Unsure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gude, V.; Corns, S. Integrated Deep Learning and Supervised Machine Learning Model for Predictive Fetal Monitoring. Diagnostics 2022, 12, 2843. https://doi.org/10.3390/diagnostics12112843
Gude V, Corns S. Integrated Deep Learning and Supervised Machine Learning Model for Predictive Fetal Monitoring. Diagnostics. 2022; 12(11):2843. https://doi.org/10.3390/diagnostics12112843
Chicago/Turabian StyleGude, Vinayaka, and Steven Corns. 2022. "Integrated Deep Learning and Supervised Machine Learning Model for Predictive Fetal Monitoring" Diagnostics 12, no. 11: 2843. https://doi.org/10.3390/diagnostics12112843
APA StyleGude, V., & Corns, S. (2022). Integrated Deep Learning and Supervised Machine Learning Model for Predictive Fetal Monitoring. Diagnostics, 12(11), 2843. https://doi.org/10.3390/diagnostics12112843