Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design, Procedures and Tasks
2.3. Signal Acquisition and Processing
2.4. Feature Extraction
2.4.1. Raw Epochs Concatenation
2.4.2. Common Spatio-Temporal Filtering
2.5. Offline Classification
- In the 4 target presentations, the number of correct classifications was greater than the number of errors;
- In the 4 non-target presentations, the number of their correct classifications as non-targets was greater than the number of errors, or the number of errors for non-targets was less than the number of correctly classified targets.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mane, R.; Chouhan, T.; Guan, C. BCI for stroke rehabilitation: Motor and beyond. J. Neural Eng. 2020, 17, 041001. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Daly, J.J.; Wolpaw, J.R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Buch, E.; Weber, C.; Cohen, L.G.; Braun, C.; Dimyan, M.A.; Ard, T.; Mellinger, J.; Caria, A.; Soekadar, S.; Fourkas, A.; et al. Think to Move: A Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke 2008, 39, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Caria, A.; Weber, C.; Brötz, D.; Ramos, A.; Ticini, L.F.; Gharabaghi, A.; Braun, C.; Birbaumer, N. Chronic stroke recovery after combined BCI training and physiotherapy: A case report. Psychophysiol. 2011, 48, 578–582. [Google Scholar] [CrossRef]
- Martinez-Cagigal, V.; Gomez-Pilar, J.; Alvarez, D.; Hornero, R. An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1332–1342. [Google Scholar] [CrossRef]
- Guger, C.; Daban, S.; Sellers, E.; Holzner, C.; Krausz, G.; Carabalona, R.; Gramatica, F.; Edlinger, G. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 2009, 462, 94–98. [Google Scholar] [CrossRef]
- Ortner, R.; Aloise, F.; Prückl, R.; Schettini, F.; Putz, V.; Scharinger, J.; Opisso, E.; Costa, U.; Guger, C. Accuracy of a P300 Speller for People with Motor Impairments: A Comparison. Clin. EEG Neurosci. 2011, 42, 214–218. [Google Scholar] [CrossRef]
- Burle, B.; Vidal, F.; Bonnet, M. Electroencephalographic nogo potentials in a no-movement context: The case of motor imagery in humans. Neurosci. Lett. 2004, 360, 77–80. [Google Scholar] [CrossRef]
- Salvaris, M.; Sepulveda, F. Classification effects of real and imaginary movement selective attention tasks on a P300-based brain–computer interface. J. Neural Eng. 2010, 7, 056004. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Jamadar, S.; Provost, A.; Michie, P.T. Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. Int. J. Psychophysiol. 2013, 87, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Heremans, E.; D’Hooge, A.-M.; De Bondt, S.; Helsen, W.; Feys, P. The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis. Mult. Scler. J. 2012, 18, 1303–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heremans, E.; Nieuwboer, A.; Spildooren, J.; De Bondt, S.; D’hooge, A.M.; Helsen, L.W.; Feys, P. Cued motor imagery in patients with multiple sclerosis. Neuroscience 2012, 206, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Heremans, E.; Nieuwboer, A.; Feys, P.; Vercruysse, S.; Vandenberghe, W.; Sharma, N.; Helsen, W.F. External Cueing Improves Motor Imagery Quality in Patients With Parkinson Disease. Neurorehabilit. Neural Repair 2012, 26, 27–35. [Google Scholar] [CrossRef]
- Carrillo-De-La-Peña, M.T.; Lastra-Barreira, C.; Galdo-Álvarez, S. Limb (hand vs. foot) and response conflict have similar effects on event-related potentials (ERPs) recorded during motor imagery and overt execution. Eur. J. Neurosci. 2006, 24, 635–643. [Google Scholar] [CrossRef]
- Galdo-Alvarez, S.; Bonilla, F.M.; González-Villar, A.J.; Carrillo-De-La-Peña, M.T. Functional Equivalence of Imagined vs. Real Performance of an Inhibitory Task: An EEG/ERP Study. Front. Hum. Neurosci. 2016, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Hotz, S.; Funk, M.; Summers, P.; Brugger, P.; Hepp-Reymond, M.-C.; Curt, A.; Kollias, S.S. Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage 2008, 39, 383–394. [Google Scholar] [CrossRef]
- Muralidharan, A.; Chae, J.; Taylor, D.M. Extracting Attempted Hand Movements from EEGs in People with Complete Hand Paralysis Following Stroke. Front. Behav. Neurosci. 2011, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shu, X.; Wang, H.; Ding, L.; Fu, J.; Jia, J. The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia. Front. Neurorobotics 2021, 15, 706630. [Google Scholar] [CrossRef]
- Antelis, J.M.; Montesano, L.; Ramos-Murguialday, A.; Birbaumer, N.; Minguez, J. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. IEEE Trans. Biomed. Eng. 2016, 64, 99–111. [Google Scholar] [CrossRef]
- Bai, Z.; Fong, K.N.K.; Zhang, J.J.; Chan, J.; Ting, K.H. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 57. [Google Scholar] [CrossRef]
- Bötzel, K.; Ecker, C.; Schulze, S. Topography and dipole analysis of reafferent electrical brain activity following the Bereitschaftspotential. Exp. Brain Res. 1997, 114, 352–361. [Google Scholar] [CrossRef]
- Korzhyk, O.V.; Dmutrotsa, O.R.; Poruchynskyi, A.I.; Morenko, A.H. Event-related potentials during contralateral switching over motor programs in humans. Regul. Mech. Biosyst. 2020, 11, 110–115. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Rizi, F.S.; Abootalebi, V.; Sadeghi, M.T. Spatial and spatio-temporal filtering based on common spatial patterns and Max-SNR for detection of P300 component. Biocybern. Biomed. Eng. 2017, 37, 365–372. [Google Scholar] [CrossRef]
- Jiang, A.; Shang, J.; Liu, X.; Tang, Y.; Kwan, H.K.; Zhu, Y. Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Krusienski, D.J.; Sellers, E.W.; Vaughan, T.M. Common Spatio-Temporal Patterns for the P300 Speller. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 421–424. [Google Scholar]
- Yu, K.; Shen, K.; Shao, S.; Ng, W.C.; Kwok, K.; Li, X. Common Spatio-Temporal Pattern for Single-Trial Detection of Event-Related Potential in Rapid Serial Visual Presentation Triage. IEEE Trans. Biomed. Eng. 2011, 58, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; de Sa, V.R. Spatio-temporal analysis of error-related brain activity in active and passive brain-computer interfaces. Brain-Comput. Interfaces 2019, 6, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef] [PubMed]
- Vasilyev, A.; Liburkina, S.; Yakovlev, L.; Perepelkina, O.; Kaplan, A. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Neuropsychologia 2017, 97, 56–65. [Google Scholar] [CrossRef]
- Rithwik, P.; Benzy, V.; Vinod, A. High accuracy decoding of motor imagery directions from EEG-based brain computer interface using filter bank spatially regularised common spatial pattern method. Biomed. Signal Process. Control 2022, 72, 103241. [Google Scholar] [CrossRef]
- Congedo, M.; Korczowski, L.; Delorme, A.; da Silva, F.L. Spatio-temporal common pattern: A companion method for ERP analysis in the time domain. J. Neurosci. Methods 2016, 267, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.X. A tutorial on generalized eigendecomposition for denoising, contrast enhancement, and dimension reduction in multichannel electrophysiology. NeuroImage 2021, 247, 118809. [Google Scholar] [CrossRef]
- Fukunaga, K. Introduction to Statistical Pattern Recognition. Elsevier: San Diego, CA, USA, 2013. [Google Scholar]
- Wang, Y.; Gao, S.; Gao, X. Common spatial pattern method for channel selection in motor imagery based brain-computer interface. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings, Shanghai, China, 31 August–3 September 2005; pp. 5392–5395. [Google Scholar]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI. IEEE Trans. Biomed. Eng. 2011, 58, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Salisbury, D.F.; Rutherford, B.; Shenton, M.E.; McCarley, R.W. Button-pressing affects P300 amplitude and scalp topography. Clin. Neurophysiol. 2001, 112, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Verleger, R.; Paehge, T.; Kolev, V.; Yordanova, J.; Jaśkowski, P. On the relation of movement-related potentials to the go/no-go effect on P3. Biol. Psychol. 2006, 73, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Billinger, M.; Daly, I.; Kaiser, V.; Jin, J.; Allison, B.Z.; Müller-Putz, G.R.; Brunner, C. Is it significant? Guidelines for reporting BCI performance. In Towards Practical Brain-Computer Interfaces; Springer: Berlin/Heidelberg, Germany, 2012; pp. 333–354. [Google Scholar]
- Congedo, M. The analysis of event-related potentials. In Computational EEG Analysis; Springer: Singapore, 2018; pp. 55–82. [Google Scholar]
- Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–Computer Interface Spellers: A Review. Brain Sci. 2018, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; He, D.; Li, C.; Qi, S. Brain–Computer Interface Speller Based on Steady-State Visual Evoked Potential: A Review Focusing on the Stimulus Paradigm and Performance. Brain Sci. 2021, 11, 450. [Google Scholar] [CrossRef]
- Bernal, S.L.; Beltrán, E.T.M.; Pérez, M.Q.; Romero, R.O.; Celdrán, A.H.; Pérez, G.M. Study of P300 Detection Performance by Different P300 Speller Approaches Using Electroencephalography. In Proceedings of the 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, NE, USA, 2–4 May 2022; pp. 1–6. [Google Scholar]
- Geng, W.J.; Wang, G.Y.; Fang, C.; Jing, H.L. Influence of visual attention in visual evoked potential examination. Fa Yi Xue Za Zhi 2011, 27, 327–329. [Google Scholar] [PubMed]
- Pihlaja, M.; Failla, L.; Peräkylä, J.; Hartikainen, K.M. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation—More Efficient Cognitive Control? Front. Hum. Neurosci. 2020, 14, 561780. [Google Scholar] [CrossRef]
- Groom, M.J.; Cragg, L. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain Cogn. 2015, 97, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Thayer, Z.C.; Johnson, B.W. Cerebral processes during visuo-motor imagery of hands. Psychophysiology 2006, 43, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Chugh, N.; Aggarwal, S. Hybrid Brain–Computer Interface Spellers: A Walkthrough Recent Advances in Signal Processing Methods and Challenges. Int. J. Human-Computer Interact. 2022, 1–18. [Google Scholar] [CrossRef]
- Nierula, B.; Spanlang, B.; Martini, M.; Borrell, M.; Nikulin, V.V.; Sanchez-Vives, M.V. Agency and responsibility over virtual movements controlled through different paradigms of brain−computer interface. J. Physiol. 2021, 599, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
- Cattan, G.; Andreev, A.; Visinoni, E. Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: An Update. Computers 2020, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Kübler, A.; Birbaumer, N. Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 2008, 119, 2658–2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvinage, M.; Castermans, T.; Petieau, M.; Seetharaman, K.; Hoellinger, T.; Cheron, G.; Dutoit, T. A subjective assessment of a P300 BCI system for lower-limb rehabilitation purposes. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3845–3849. [Google Scholar]
- Bulanov, V.; Zakharov, A.; Sergio, L.; Lebedev, M. Visuomotor Transformation with a P300 Brain-Computer Interface Combined with Robotics and Virtual Reality: A Device for Post-Stroke Rehabilitation. Available SSRN 2021, 3811232. [Google Scholar] [CrossRef]
- Syrov, N.; Bredichin, D.; Kaplan, A. Processing of Sensory Information is Affected by BCI Feedback Being Perceived. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2020; pp. 575–580. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrov, N.; Yakovlev, L.; Nikolaeva, V.; Kaplan, A.; Lebedev, M. Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. Diagnostics 2022, 12, 2607. https://doi.org/10.3390/diagnostics12112607
Syrov N, Yakovlev L, Nikolaeva V, Kaplan A, Lebedev M. Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. Diagnostics. 2022; 12(11):2607. https://doi.org/10.3390/diagnostics12112607
Chicago/Turabian StyleSyrov, Nikolay, Lev Yakovlev, Varvara Nikolaeva, Alexander Kaplan, and Mikhail Lebedev. 2022. "Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option" Diagnostics 12, no. 11: 2607. https://doi.org/10.3390/diagnostics12112607
APA StyleSyrov, N., Yakovlev, L., Nikolaeva, V., Kaplan, A., & Lebedev, M. (2022). Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. Diagnostics, 12(11), 2607. https://doi.org/10.3390/diagnostics12112607