Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Endovascular Revascularization
2.3. Angiographic and Clinical Results Post-EVT
2.4. Perfusion Measurements with HSI and Thermal Imaging
2.5. Image Preprocessing
2.6. Statistical Analysis
3. Results
3.1. Patient and Procedural Characteristics
3.2. Perfusion Changes Post-EVT in Hospital and at Home
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, J.; Santulli, G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis 2018, 275, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.-B.; Suresh, K.R.; Murad, M.H.; et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69, 3S–125S.e40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehm, N.; Pattynama, P.; Jaff, M.; Cremonesi, A.; Becker, G.; Hopkins, L.; Mahler, F.; Talen, A.; Cardella, J.; Ramee, S.; et al. Clinical Endpoints in Peripheral Endovascular Revascularization Trials: A Case for Standardized Definitions. Eur. J. Vasc. Endovasc. Surg. 2008, 36, 409–419. [Google Scholar] [CrossRef]
- Reinecke, H.; Unrath, M.; Freisinger, E.; Bunzemeier, H.; Meyborg, M.; Lüders, F.; Gebauer, K.; Roeder, N.; Berger, K.; Malyar, N.M. Peripheral arterial disease and critical limb ischaemia: Still poor outcomes and lack of guideline adherence. Eur. Heart J. 2015, 36, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Duff, S.; Mafilios, M.S.; Bhounsule, P.; Hasegawa, J.T. The burden of critical limb ischemia: A review of recent literature. Vasc. Health Risk Manag. 2019, 15, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Venermo, M.; Sprynger, M.; Desormais, I.; Björck, M.; Brodmann, M.; Cohnert, T.; De Carlo, M.; Espinola-Klein, C.; Kownator, S.; Mazzolai, L.; et al. Follow-up of patients after revascularisation for peripheral arterial diseases: A consensus document from the European Society of Cardiology Working Group on Aorta and Peripheral Vascular Diseases and the European Society for Vascular Surgery. Eur. J. Prev. Cardiol. 2019, 26, 1971–1984. [Google Scholar] [CrossRef] [Green Version]
- Hess, C.N.; Rogers, R.K.; Wang, T.Y.; Fu, R.; Gundrum, J.; LaPointe, N.M.A.; Hiatt, W.R. Major Adverse Limb Events and 1-Year Outcomes After Peripheral Artery Revascularization. J. Am. Coll. Cardiol. 2018, 72, 999–1011. [Google Scholar] [CrossRef]
- Haveman, M.E.; Kleiss, S.F.; Ma, K.F.; Vos, C.G.; Ünlü, Ç.; Schuurmann, R.C.; Bokkers, R.P.; Hermens, H.J.; De Vries, J.-P.P. Telemedicine in patients with peripheral arterial disease: Is it worth the effort? Expert Rev. Med Devices 2019, 16, 777–786. [Google Scholar] [CrossRef]
- Khaodhiar, L.; Dinh, T.; Schomacker, K.T.; Panasyuk, S.V.; Freeman, J.E.; Lew, R.; Vo, T.; Panasyuk, A.A.; Lima, C.; Giurini, J.M.; et al. The Use of Medical Hyperspectral Technology to Evaluate Microcirculatory Changes in Diabetic Foot Ulcers and to Predict Clinical Outcomes. Diabetes Care 2007, 30, 903–910. [Google Scholar] [CrossRef]
- Gunter, R.L.; Fernandes-Taylor, S.; Rahman, S.; Awoyinka, L.; Bennett, K.M.; Weber, S.M.; Greenberg, C.C.; Kent, C.K. Feasibility of an Image-Based Mobile Health Protocol for Postoperative Wound Monitoring. J. Am. Coll. Surg. 2018, 226, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Wermelink, B.; Ma, K.F.; Haalboom, M.; El Moumni, M.; de Vries, J.-P.P.; Geelkerken, R.H. A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Normahani, P.; Khosravi, S.; Sounderajah, V.; Aslam, M.; Standfield, N.J.; Jaffer, U. The Effect of Lower Limb Revascularization on Flow, Perfusion, and Systemic Endothelial Function: A Systematic Review. Angiology 2020, 72, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Borozan, P.G.; Schuler, J.J.; Spigos, D.G.; Flanigan, D.P. Long-Term Hemodynamic Evaluation of Lower Extremity Percuta-neous Transluminal Angioplasty. J. Vasc. Surg. 1985, 2, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.F.; Kleiss, S.F.; Schuurmann, R.C.; Bokkers, R.P.; Ünlü, Ç.; De Vries, J.-P.P. A systematic review of diagnostic techniques to determine tissue perfusion in patients with peripheral arterial disease. Expert Rev. Med Devices 2019, 16, 697–710. [Google Scholar] [CrossRef]
- Kleiss, S.F.; Ma, K.F.; Schuurmann, R.C.; El Moumni, M.; Zeebregts, C.J.; Bokkers, R.P.; Ünlü, Ç.; de Vries, J.P.P.M. Hyperspectral imaging for noninvasive tissue perfusion measurements of the lower leg: Review of literature and introduction of a standardized measurement protocol with a portable system. J. Cardiovasc. Surg. 2020, 60, 652–661. [Google Scholar] [CrossRef]
- Gauci, J.; Falzon, O.; Formosa, C.; Gatt, A.; Ellul, C.; Mizzi, S.; Mizzi, A.; Delia, C.S.; Cassar, K.; Chockalingam, N.; et al. Automated Region Extraction from Thermal Images for Peripheral Vascular Disease Monitoring. J. Healthc. Eng. 2018, 2018, 5092064. [Google Scholar] [CrossRef] [Green Version]
- Kleiss, S.F.; Ma, K.F.; El Moumni, M.; Ünlü, Ç.; Nijboer, T.S.; Schuurmann, R.C.L.; Bokkers, R.P.H.; de Vries, J.-P.P.M. Detecting Changes in Tissue Perfusion With Hyperspectral Imaging and Thermal Imaging Following Endovascular Treatment for Peripheral Arterial Disease. J. Endovasc. Ther. 2022. [Google Scholar] [CrossRef]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Man-agement of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45, S5–S67. [Google Scholar] [CrossRef] [Green Version]
- Zierler, R.E.; Jordan, W.D.; Lal, B.K.; Mussa, F.; Leers, S.; Fulton, J.; Pevec, W.; Hill, A.; Murad, M.H. The Society for Vascular Surgery practice guidelines on follow-up after vascular surgery arterial procedures. J. Vasc. Surg. 2018, 68, 256–284. [Google Scholar] [CrossRef]
- Michalska, M.; Kazimierczak, W.; Leszczyński, W.; Nadolska, K.; Bryl, Ł. Contemporary follow-up imaging after endovascular repair of lower extremity atherosclerotic lesions. Pol. J. Radiol. 2018, 83, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Kleiss, S.F.; Ma, K.F.; El Moumni, M.; Schuurmann, R.C.L.; Zeebregts, C.J.; Haalboom, M.; Bokkers, R.P.H.; de Vries, J.-P.P.M. Reliability assessment of hyperspectral imaging with the HyperView™ system for lower extremity superficial tissue oxygenation in young healthy volunteers. Int. J. Clin. Monit. Comput. 2021, 36, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Osmundson, P.J.; Rooke, T.W.; Hallett, J.W. Effect of Arterial Revascularization on Transcutaneous Oxygen Tension of the Ischemic Extremity. Mayo Clin. Proc. 1988, 63, 897–902. [Google Scholar] [CrossRef]
- Arora, S.; Pomposelli, F.; LoGerfo, F.W.; Veves, A. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J. Vasc. Surg. 2002, 35, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Saucy, F.; Dischl, B.; Delachaux, A.; Feihl, F.; Liaudet, L.; Waeber, B.; Corpataux, J.-M. Foot Skin Blood Flow Following Infrainguinal Revascularization for Critical Lower Limb Ischemia. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.J.; Beckers, R.C.; Jörning, P.J.; Slaaf, D.W.; Reneman, R.S. Microcirculatory haemodynamics before and after vascular surgery in severe limb ischaemia—The relation to post-operative oedema formation. Eur. J. Vasc. Surg. 1990, 4, 525–529. [Google Scholar] [CrossRef]
- Chin, J.A.; Wang, E.C.; Kibbe, M.R. Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease. J. Vasc. Surg. 2011, 54, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-C.; Wang, C.-Y.; Cheng, Y.; Hung, Y.-P.; Lin, T.-H.; Chen, W.-J.; Su, C.-S.; Hsu, C.-Y.; Liu, T.-J.; Lee, W.-L. Plantar thermography predicts freedom from major amputation after endovascular therapy in critical limb ischemic patients. Medicine 2020, 99, e22391. [Google Scholar] [CrossRef]
- Wagner, H.-J.; Schmitz, R.; Alfke, H.; Klose, K.-J. Influence of Percutaneous Transluminal Angioplasty on Transcutaneous Oxygen Pressure in Patients with Peripheral Arterial Occlusive Disease. Radiology 2003, 226, 791–797. [Google Scholar] [CrossRef]
- Gunnarsson, T.; Lindgren, H.; Gottsäter, A.; Pärsson, H. Intraprocedural Transcutaneous Oxygen Pressure and Systolic Toe Pressure Measurements During and after Endovascular Intervention in Patients with Chronic Limb Threatening Ischaemia. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 583–589. [Google Scholar] [CrossRef] [PubMed]
Variables | Data Value |
---|---|
(N = 34) | |
Age, years | 66.9 ± 9.8 |
Sex | |
Male | 24 (71) |
Female | 10 (29) |
Body mass index, kg/m2 | 26.0 ± 4.3 |
Smoking | |
Current | 12 (35) |
Former smoker * | 17 (50) |
Nonsmoker | 5 (15) |
Hyperlipidemia | 8 (24) |
Diabetes mellitus | 15 (44) |
Type 1 | 1 (3) |
Type 2 | 14 (41) |
Hypertension | 19 (56) |
Coronary artery disease ** | 21 (62) |
Prior cerebral events | 8 (24) |
Pulmonary disease *** | 13 (38) |
Renal dysfunction (eGFR < 60 mL/min/1.73 m2) | 8 (24) |
Variable | Rutherford Class 2 to 4 | Rutherford Class 5 |
---|---|---|
(N = 26) | (N = 15) | |
Rutherford classification | ||
2 | 9 (35) | - |
3 | 10 (38) | - |
4 | 7 (27) | - |
5 | - | 15 (100) |
ABI (N = 31) | 0.64 ± 0.20 | 0.61 ± 0.26 |
GLASS classification | ||
Infrainguinal GLASS stage | ||
N/A | 18 (69) | 5 (33) |
I | 1 (4) | 4 (27) |
II | 1 (4) | 4 (27) |
III | 6 (23) | 2 (13) |
Not classified a | - | - |
Inframalleolar | 1 (4) | 0 (0) |
P0 | 12 (46) | 6 (40) |
P1 | 3 (12) | 1 (7) |
P2 | 6 (23) | 7 (47) |
Not classified a | 4 (15) | 1 (7) |
Treated arterial segments | (N = 44) | (N = 35) |
Arterial segments | ||
CIA | 11 (25) | 3 (9) |
EIA | 13 (30) | 3 (9) |
SFA | 12 (27) | 8 (23) |
PFA | 0 (0) | 0 (0) |
Popliteal artery | 4 (9) | 8 (23) |
ATA | 2 (5) | 7 (20) |
Peroneal artery | 2 (5) | 4 (11) |
Posterior tibial artery | 0 (0) | 2 (6) |
TASC-II classification | ||
TASC-II A | 18 (41) | 13 (37) |
TASC-II B | 11 (25) | 12 (34) |
TASC-II C | 6 (14) | 6 (17) |
TASC-II D | 9 (20) | 4 (11) |
Endovascular therapy | ||
PTA without stent | 10 (23) | 21 (60) |
PTA and stent | 34 (77) | 14 (40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.F.; Nijboer, T.S.; Kleiss, S.F.; El Moumni, M.; Bokkers, R.P.H.; Schuurmann, R.C.L.; de Vries, J.-P.P.M. Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease. Diagnostics 2022, 12, 2489. https://doi.org/10.3390/diagnostics12102489
Ma KF, Nijboer TS, Kleiss SF, El Moumni M, Bokkers RPH, Schuurmann RCL, de Vries J-PPM. Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease. Diagnostics. 2022; 12(10):2489. https://doi.org/10.3390/diagnostics12102489
Chicago/Turabian StyleMa, Kirsten F., Thomas S. Nijboer, Simone F. Kleiss, Mostafa El Moumni, Reinoud P. H. Bokkers, Richte C. L. Schuurmann, and Jean-Paul P. M. de Vries. 2022. "Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease" Diagnostics 12, no. 10: 2489. https://doi.org/10.3390/diagnostics12102489
APA StyleMa, K. F., Nijboer, T. S., Kleiss, S. F., El Moumni, M., Bokkers, R. P. H., Schuurmann, R. C. L., & de Vries, J.-P. P. M. (2022). Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease. Diagnostics, 12(10), 2489. https://doi.org/10.3390/diagnostics12102489