The Vital Role of Thanatochemistry in the Postmortem Diagnostic of Diabetic Ketoacidosis—Case Report
Abstract
:1. Introduction
2. Case Report
2.1. Case History
2.2. Postmortem Findings
2.3. Biochemical Analyses
2.4. Glucose Method
2.5. BHB Methods
2.6. Ac Method
2.7. HbA1c Method
2.8. Postmortem Diagnostic Criteria for DM
2.9. Postmortem Diagnostic Criteria for DKA
2.10. Cause of Death
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.H.; Kihl-Selstam, E.; Eriksson, J.W. Ketoacidosis occurs in both Type 1 and Type 2 diabetes- a population-based study from Northern Sweden. Diabet. Med. 2008, 25, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.P.; Swerdlow, A.J.; Slater, S.D.; Botha, J.L.; Burden, A.C.; Waugh, N.R.; Smith, A.W.M.; Hill, R.D.; Bingley, P.J.; Patterson, C.C.; et al. The British Diabetic Association Cohort Study, II: Cause-specific mortality in patients with insulintreated diabetes mellitus. Diabet. Med. 1999, 16, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Dahlquist, G.; Kallen, B. Mortality in childhood-onset type 1 diabetes. Diabetes Care 2005, 28, 2384–2387. [Google Scholar] [CrossRef] [Green Version]
- Patterson, C.C.; Dahlquist, G.; Harjutsalo, V.; Joner, G.; Feltbower, R.G.; Svensson, J.; Schober, E.; Gyurus, E.; Castell, C.; Urbonaite, B.; et al. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetologia 2007, 50, 2439–2442. [Google Scholar] [CrossRef]
- Umpierrez, G.E.; Kelly, J.P.; Navarrete, J.E.; Casals, M.M.; Kitabchi, A.E. Hyperglycemic crises in urban blacks. Arch. Intern. Med. 1997, 157, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Klingensmith, G.J.; Tamborlane, W.V.; Wood, J. Diabetic ketoacidosis at diabetes onset: Still an all too common threat in youth. J. Pediatr. 2013, 162, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Dabelea, D.; Rewers, A.; Stafford, J.M. Trends in the prevalence of ketoacidosis at diabetes diagnosis: The SEARCH for diabetes in youth study. Pediatrics 2014, 133, 938–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Yool, A.J.; Byard, R.W. Armanni-Ebstein lesions in terminal hyperglycemia. J. Forensic Sci. 2017, 62, 921–925. [Google Scholar] [CrossRef]
- Zhou, C.; Gilbert, J.D.; Byard, R.W. How useful is basal renal tubular epithelial cell vacuolization as a marker for significant hyperglycemia at autopsy? J. Forensic Sci. 2011, 56, 1531–1533. [Google Scholar] [CrossRef]
- Tse, R.; Garland, J.; Kesha, K. Basal subnuclear vacuolization, Armanni-Ebstein lesions, Wischnewsky lesions, and elevated vitreous glucose and β-hydroxybuyrate: Is it hypothermia, diabetic ketoacidosis, or both? Am. J. Forensic Med. Pathol. 2018, 39, 279–281. [Google Scholar] [CrossRef]
- Clark, K.H.; Stoppacher, R. Gastric mucosal petechial hemorrhages (Wischnewsky lesions), hypothermia, and diabetic ketoacidosis. Am. J. Forensic Med. Pathol. 2016, 37, 165–169. [Google Scholar] [CrossRef]
- Uhlenhopp, D.J.; Pagnotta, G.; Sunkara, T. Acute Esophageal Necrosis: A Rare Case of Upper Gastrointestinal Bleeding from Diabetic Ketoacidosis. Clin. Pract. 2020, 10, 1254. [Google Scholar] [CrossRef]
- Palmiere, C.; Mangin, P. Postmortem chemistry update part I. Int. J. Leg. Med. 2012, 126, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.; Kanchan, T.; Krishan, K. Methods of Estimation of Time Since Death; StatPearls Publishing: Treasure Island, FL, USA, January 2021. [Google Scholar] [PubMed]
- Palmiere, C. Postmortem diagnosis of diabetes mellitus and its complications. Croat. Med. J. 2015, 56, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Pigaiani, N.; Bertaso, A.; De Palo, E.F.; Bortolotti, F.; Tagliaro, F. Vitreous humor endogenous compounds analysis for post-mortem forensic investigation. Forensic Sci. Int. 2020, 310, 110235. [Google Scholar] [CrossRef]
- Zilg, B.; Alkass, K.; Berg, S.; Druid, H. Postmortem identification of hyperglycemia. Forensic Sci. Int. 2009, 185, 89–95. [Google Scholar] [CrossRef]
- Hockenhull, J.; Dhillo, W.; Andrews, R.; Paterson, S. Investigation of markers to indicate and distinguish death due to Alcoholic Ketoacidosis, Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State using postmortem samples. Forensic Sci. Int. 2012, 214, 142–147. [Google Scholar] [CrossRef]
- Chen, J.H.; Michiue, T.; Inamori-Kawamoto, O.; Ikeda, S.; Ishikawa, T.; Maeda, H. Comprehensive investigation of postmortem glucose levels in blood and body fluids with regard to the cause of death in forensic autopsy cases. Leg. Med. 2015, 17, 475–482. [Google Scholar] [CrossRef]
- Palmiere, C.; Mangin, P.; Werner, D. Postmortem distribution of 3-beta-hydroxybutyrate. J. Forensic Sci. 2014, 59, 161–166. [Google Scholar] [CrossRef]
- Heninger, M. Postmortem vitreous beta-hydroxybutyrate: Interpretation in a forensic setting. J. Forensic Sci. 2012, 57, 1234–1240. [Google Scholar] [CrossRef]
- Midtlyng, L.; Høiseth, G.; Luytkis, H.; Kristoffersen, L.; Le Nygaard, I.; Strand, M.C.; Arnestad, M.; Vevelstad, M. Relationship between betahydroxybutyrate (BHB) and acetone concentrations in postmortem blood and cause of death. Forensic Sci. Int. 2021, 321, 110726. [Google Scholar] [CrossRef]
- Peyron, P.A.; Plawecki, M.; Lossois, M.; Lotierzo, M.; Baccino, E.; Cristol, J.P. Usefulness of a blood glucose and ketone monitoring device as a screening tool for lethal diabetic ketoacidosis. Int. J. Leg. Med. 2021, 135, 293–299. [Google Scholar] [CrossRef]
- Girlescu, N.; Stoica, B.; Timofte, A.D.; Hunea, I.; Diac, M.; Knieling, A.; Damian, S.I.; Iov, T.; Iliescu, D.B. Thanatochemical Study of Glycated Hemoglobin in Diabetic Status Assessment. Medicina 2021, 57, 342. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes-2013. Diabetes Care 2013, 36 (Suppl. 1), S11–S66. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report of a World Health Organization consultation. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Diabetes Res. Clin. Pract. 2011, 93, 299–309. [Google Scholar] [CrossRef]
- Song, J.P.; Chen, L.; Chen, X.; Ren, J.; Zhang, N.N.; Tirasawasdichai, T.; Hu, Z.L.; Hua, W.; Hu, Y.R.; Tang, H.; et al. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci. Transl. Med. 2020, 12, 8329. [Google Scholar] [CrossRef]
- Coe, J.I. Postmortem chemistry update: Emphasis on forensic application. Am. J. Forensic Med. Pathol. 1993, 14, 91–117. [Google Scholar] [CrossRef]
- Ali, Z.; Levine, B.; Ripple, M.; Fowler, D.R. Diabetic ketoacidosis: A silent death. Am. J. Forensic Med. Pathol. 2012, 33, 189–193. [Google Scholar] [CrossRef]
- Osuna, E.; García-Víllora, A.; Pérez-Cárceles, M.D.; Conejero, J.; Abenza, J.M.; Martínez, P.; Luna, A. Vitreous humor fructosamine concentrations in the autopsy diagnosis of diabetes mellitus. Int. J. Leg. Med. 1999, 12, 275–279. [Google Scholar] [CrossRef]
- Osuna, E.; Vivero, G.; Conejero, J.; Abenza, J.M.; Martínez, P.; Luna, A.; Pérez-Cárceles, M.D. Postmortem vitreous humor β-hydroxybutyrate: Its utility for the postmortem interpretation of diabetes mellitus. Forensic Sci. Int. 2005, 153, 189–195. [Google Scholar] [CrossRef]
- Coe, J.I. Hypothermia: Autopsy findings and vitreous glucose. J. Forensic Sci. 1984, 29, 389–395. [Google Scholar] [CrossRef]
- Klaric, K.A.; Milroy, C.M.; Parai, J.L. Utility of Postmortem Vitreous Beta-Hydroxybutyrate Testing for Distinguishing Sudden from Prolonged Deaths and for Diagnosing Ketoacidosis. J. Forensic Sci. 2020, 65, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Hydara, Y.E.; Zilg, B. Postmortem diagnosis of ketoacidosis: Levels of beta-hydroxybutyrate, acetone and isopropanol in different causes of death. Forensic Sci. Int. 2020, 314, 110418. [Google Scholar] [CrossRef]
- Kjærulff, M.L.B.; Astrup, B.S. Sudden death due to diabetic ketoacidosis following power failure of an insulin pump: Autopsy and pump data. J. Forensic Leg. Med. 2019, 63, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.G.; Richardson, S.J. Fifty years of pancreatic islet pathology in human type 1 diabetes: Insights gained and progress made. Diabetologia 2018, 61, 2499–2506. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.F.; Scano, P.; Noto, A.; Nioi, M.; Sanna, R.; Paribello, F.; De-Giorgio, F.; Locci, E.; d’Aloja, E. Monitoring the modifications of the vitreous humor metabolite profile after death: An animal model. Biomed. Res. Int. 2015, 2015, 627201. [Google Scholar] [CrossRef]
- Locci, E.; Scano, P.; Rosa, M.F.; Nioi, M.; Noto, A.; Atzori, L.; Demontis, R.; De-Giorgio, F.; d’Aloja, E. A metabolomic approach to animal vitreous humor topographical composition: A pilot study. PLoS ONE 2014, 9, e97773. [Google Scholar] [CrossRef] [Green Version]
- Stocchero, M.; Locci, E.; d’Aloja, E.; Nioi, M.; Baraldi, E.; Giordano, G. PLS2 in Metabolomics. Metabolites 2019, 9, 51. [Google Scholar] [CrossRef] [Green Version]
Parameter | Obtained Value | Reference Value |
---|---|---|
Glucose in vitreous humor | 12.765 mmol/L (230 mg/dL) | hyperglycemic state >10 mmol/L (>180 mg/dL) [16,17,18,19,20] |
Glucose in occipital cerebrospinal fluid (CSF O) | 12.099 mmol/L (218 mg/dL) | hyperglycemic state >10 mmol/L (>180 mg/dL) [16,17,18,19,20] |
Glucose in lumbar cerebrospinal fluid (CSF L) | 11.211 mmol/L (202 mg/dL) | hyperglycemic state >10 mmol/L (>180 mg/dL) [16,17,18,19,20] |
Acetone (Ac) in blood | 0.52 g‰ | negative [14] |
Beta-hydroxybutyrate (BHB) in vitreous humor (VH) | 0.57 mmol/L | negative [14] |
Beta-hydroxybutyrate (BHB) in occipital cerebrospinal fluid (CSF O) | 0.55 mmol/L | negative [14] |
Beta-hydroxybutyrate (BHB) in lumbar cerebrospinal fluid (CSF L) | 0.2986 mmol/L | negative [14] |
Beta-hydroxybutyrate (BHB) in blood (XPER Technology analyzer) | 7.3 mmol/L | negative [14] >1.5 mmol/L risk of developing DKA Ketoacidosis >2.5 mmol/L [14,16,17,18,19,20,21,22,23,24] |
Glycated hemoglobin (HbA1c) in peripheral blood | 12.6% | normal 4.8–5.6%; prediabetes 5.7–6.4%; diabetes ≥ 6.5%; the therapeutic target for diabetics is 7% [25,26,27] |
Glycated hemoglobin (HbA1c) in central blood | 12% | normal 4.8–5.6%; prediabetes 5.7–6.4%; diabetes ≥6.5%; the therapeutic target for diabetics is 7% [25,26,27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girlescu, N.; Stoica, B.; Hunea, I.; Diac, M.; Damian, S.I.; David, S.; Iov, T.; Tabian, D.; Bulgaru Iliescu, D. The Vital Role of Thanatochemistry in the Postmortem Diagnostic of Diabetic Ketoacidosis—Case Report. Diagnostics 2021, 11, 988. https://doi.org/10.3390/diagnostics11060988
Girlescu N, Stoica B, Hunea I, Diac M, Damian SI, David S, Iov T, Tabian D, Bulgaru Iliescu D. The Vital Role of Thanatochemistry in the Postmortem Diagnostic of Diabetic Ketoacidosis—Case Report. Diagnostics. 2021; 11(6):988. https://doi.org/10.3390/diagnostics11060988
Chicago/Turabian StyleGirlescu, Nona, Bogdan Stoica, Iuliana Hunea, Madalina Diac, Simona Irina Damian, Sofia David, Tatiana Iov, Daniel Tabian, and Diana Bulgaru Iliescu. 2021. "The Vital Role of Thanatochemistry in the Postmortem Diagnostic of Diabetic Ketoacidosis—Case Report" Diagnostics 11, no. 6: 988. https://doi.org/10.3390/diagnostics11060988