Relationship between Retinal Microvasculature, Cardiovascular Risk and Silent Brain Infarction in Hypertensive Patients
Abstract
:1. Introduction
2. Methods
2.1. Procedure
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, C.M. Lacunes: Small, deep cerebral infarcts. Neurology 1998, 50, 841. [Google Scholar] [CrossRef] [PubMed]
- Longstreth, W.T., Jr.; Dulberg, C.; Manolio, T.A.; Lewis, M.R.; Beauchamp, N.J., Jr.; O’Leary, D.; Carr, J.; Furberg, C.D. Incidence, manifestations, and predictors of brain infarcts defined by serial cranial magnetic resonance imaging in the elderly. Cardiovascular Health Study Stroke 2002, 33, 2376–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeer, S.E.; Prins, N.D.; den Heijer, T.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 2003, 348, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokura, H.; Kobayashi, S.; Yamaguchi, S.; Iijima, K.; Nagai, A.; Toyoda, G.; Oguro, H.; Takahashi, K. Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: A prospective cohort study. J. Stroke Cerebrovasc. Dis. 2006, 15, 57–63. [Google Scholar] [CrossRef]
- Gupta, A.; Giambrone, A.E.; Gialdini, G.; Finn, C.; Delgado, D.; Gutierrez, J.; Wright, C.; Beiser, A.S.; Seshadri, S.; Pandya, A.; et al. Silent Brain Infarction and Risk of Future Stroke: A Systematic Review and Meta-Analysis. Stroke 2016, 47, 719–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanning, J.P.; Wong, A.A.; Fraser, J.F. The epidemiology of silent brain infarction: A systematic review of population-based cohorts. BMC Med. 2014, 12, 119. [Google Scholar] [CrossRef]
- Available online: www.who.int/es/news-room/fact-sheets/detail/hypertension (accessed on 13 September 2019).
- Menéndez, E.; Delgado, E.; Fernández-Vega, F.; Prieto, M.A.; Bordiú, E.; Calle, A.; Carmena, R.; Castaño, L.; Catalá, M.; Franch, J.; et al. Prevalence, Diagnosis, Treatment, and Control of Hypertension in Spain. Results of the Di@bet.es Study. Rev. Española Cardiol. 2016, 69, 572–578. [Google Scholar] [CrossRef]
- Breslin, D.J.; Gifford, R.W., Jr.; Fairbairn, J.F., 2nd; Kearns, T.P. Prognostic importance of ophthalmoscopic findings in essential hypertension. JAMA 1966, 195, 335–338. [Google Scholar] [CrossRef]
- Frant, R.; Groen, J. Prognosis of vascular hypertension; a 9 year follow-up study of 418 cases. Arch. Intern. Med. 1950, 85, 727–750. [Google Scholar] [CrossRef]
- Ong, Y.T.; Wong, T.Y.; Klein, R.; Klein, B.E.; Mitchell, P.; Sharrett, A.R.; Couper, D.J.; Ikram, M.K. Hypertensive retinopathy and risk of stroke. Hypertension 2013, 62, 706–711. [Google Scholar] [CrossRef]
- Yatsuya, H.; Folsom, A.R.; Wong, T.Y.; Klein, R.; Klein, B.E.; Sharrett, A.R. ARIC Study Investigators. Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities Study. Stroke 2010, 41, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; De Jong, P.T.; et al. Prediction of incident stroke events based on retinal vessel calibre: A systematic review and individual-participant meta-analysis. Am. J. Epidemiol. 2009, 170, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; DeJong, P.T.; et al. Meta-analysis: Retinal vessel calibre and risk for coronary heart disease. Ann. Intern. Med. 2009, 151, 404–413. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal Vessel Calibres in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Patton, N.; Deary, I.J.; Strachan, M.W.; Fowkes, F.G.; Mitchell, R.J.; Price, J.F. Retinal microvascular abnormalities and cognitive dysfunction: A systematic review. Br. J. Ophthalmol. 2008, 92, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Gatto, N.M.; Varma, R.; Torres, M.; Wong, T.Y.; Johnson, P.L.; Segal-Gidan, F.; Mack, W.J. Retinal microvascular abnormalities and cognitive function in Latino adults in Los Angeles. Ophthalmic Epidemiol. 2012, 19, 127–136. [Google Scholar] [CrossRef]
- Marrugat, J.; Vila, J.; Baena-Díez, J.M.; Grau, M.; Sala, J.; Ramos, R.; Subirana, I.; Fitó, M.; Elosua, R. Validez relativa de la estimación del riesgo cardiovascular a 10 años en una cohorte poblacional del estudio REGICOR [Relative validity of the 10-year cardiovascular risk estimate in a population cohort of the REGICOR study]. Rev. Esp. Cardiol. 2011, 64, 385–394. [Google Scholar] [CrossRef]
- Cooney, M.T.; Dudina, A.; D’Agostino, R.; Graham, I.M. Cardiovascular risk-estimation systems in primary prevention: Do they differ? Do they make a difference? Can we see the future? Circulation 2010, 122, 300–310. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Coll-de-Tuero, G.; González-Vázquez, S.; Rodríguez-Poncelas, A.; Barceló, M.A.; Barrot-de-la Puente, J.; Penedo, M.G.; Pose-Reino, A.; Pena-Seijo, M.; Saez, M. Retinal arteriole-to-venule ratio changes and target organ disease evolution in newly diagnosed patients with hypertension at 1-year follow-up. J. Am. Soc. Hypertens. 2014, 8, 83–93. [Google Scholar] [CrossRef]
- Maderuelo-Fernandez, J.A.; Garcia-Garcia, A.; Chamoso, P.; Recio-Rodríguez, J.I.; Rodríguez-González, S.; Patino-Alonso, M.C.; Rodriguez-Sanchez, E.; Corchado-Rodríguez, J.M.; Gómez-Marcos, M.A.; García-Ortiz, L. Automatic image analyser to assess retinal vessel calibre (ALTAIR). A new tool to evaluate the thickness, area and length of the vessels of the retina. Int. J. Med. Inform. 2020, 136, 104090. [Google Scholar] [CrossRef]
- Tapp, R.J.; Owen, C.G.; Barman, S.A.; Welikala, R.A.; Foster, P.J.; Whincup, P.H.; Strachan, D.P.; Rudnicka, A.R. Associations of Retinal Microvascular Diameters and Tortuosity With Blood Pressure and Arterial Stiffness: United Kingdom Biobank. Hypertension 2019, 74, 1383–1390. [Google Scholar] [CrossRef]
- Robertson, G.; Fleming, A.; Williams, M.C.; Trucco, E.; Quinn, N.; Hogg, R.; McKay, G.J.; Kee, F.; Young, I.; Pellegrini, E.; et al. Northern Ireland Cohort of Longitudinal Ageing. Association between hypertension and retinal vascular features in ultra-widefield fundus imaging. Open Heart 2020, 7, e001124. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.Y.; Mok, V.; Lee, J.; Fan, Y.; Zeng, J.; Lam, B.; Wong, A.; Kwok, C.; Lai, M.; Zee, B. Retinal image analytics detects white matter hyperintensities in healthy adults. Ann. Clin. Transl. Neurol. 2018, 6, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Riba-Llena, I.; Jarca, C.I.; Mundet, X.; Tovar, J.L.; Orfila, F.; López-Rueda, A.; Nafría, C.; Fernández, J.L.; Castañé, X.; Domingo, M.; et al. Investigating silent strokes in hypertensives: A magnetic resonance imaging study (ISSYS): Rationale and protocol design. BMC Neurol. 2013, 13, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.M.; Kim, B.J.; Oh, J.Y.; Kim, S.J.; Lee, S.H.; Oh, B.H.; Yoon, B.W. Retinopathy as an indicator of silent brain infarction in asymptomatic hypertensive subjects. J. Neurol. Sci. 2007, 252, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.D.; Huber, G.; Feng, Y.; Tanimoto, N.; Mühlfriedel, R.; Beck, S.C.; Tröger, E.; Kernstock, C.; Preising, M.N.; Lorenz, B.; et al. In vivo assessment of retinal vascular wall dimensions. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5254–5259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, P.; Riba-Llena, I.; Tovar, J.L.; Jarca, C.I.; Mundet, X.; López-Rueda, A.; Orfila, F.; Llussà, J.; Manresa, J.M.; Álvarez-Sabín, J.; et al. Prevalence and associated factors of silent brain infarcts in a mediterranean cohort of hypertensives. Hypertension 2014, 64, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Dumitrascu, O.M.; Demaerschalk, B.M.; Valencia Sanchez, C.; Almader-Douglas, D.; O’Carroll, C.B.; Aguilar, M.I. ovascular Abnormalities as Surrogate Markers of Cerebrovascular Ischemic Disease: A Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2018, 27, 1960–1968. [Google Scholar] [CrossRef]
- Heitmar, R.; Kalitzeos, A.A.; Patel, S.R.; Prabhu-Das, D.; Cubbidge, R.P. Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography. J. Optom. 2015, 8, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.K.; De Jong, F.J.; Van Dijk, E.J.; Prins, N.D.; Hofman, A.; Breteler, M.M.; De Jong, P.T. Retinal vessel diameters and cerebral small vessel disease: The Rotterdam Scan Study. Brain 2006, 129 Pt 1, 182–188. [Google Scholar] [CrossRef]
- He, Y.; Li, S.M.; Kang, M.T.; Liu, L.R.; Li, H.; Wei, S.F.; Ran, A.R.; Wang, N. Association between blood pressure and retinal arteriolar and venular diameters in Chinese early adolescent children, and whether the association has gender difference: A cross-sectional study. BMC Ophthalmol. 2018, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Sharrett, A.R.; Klein, B.E.; Chambless, L.E.; Cooper, L.S.; Hubbard, L.D.; Evans, G. Are retinal arteriolar abnormalities related to atherosclerosis? The Atherosclerosis Risk in Communities Study. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1644–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NO SBI * | SBI | TOTAL | ||
---|---|---|---|---|
N = 628 | N = 67 | N = 695 | p | |
Age | 62.4 (5.6) | 64.6 (4.7) | 62.7 (5.6) | 0.002 |
Men | 285 (45.4%) | 49 (73.1%) | 334 (48.1%) | 0.000 |
Former smoker | 94 (15.0%) | 11 (16.4%) | 105 (15.1%) | 0.753 |
Dyslipidemia † | 438 (70.1%) | 52 (78.8%) | 490 (70.9%) | 0.139 |
REGICOR | 0.014 | |||
Low < 5 | 170 (27.1%) | 10 (14.9%) | 180 (25.9%) | |
Moderate 5–10 | 328 (52.2%) | 34 (50.7%) | 362 (52.1%) | |
High > 10 | 130 (20.7%) | 23 (34.3%) | 153 (22.0%) | |
Detected Alterations in Retinography | ||||
AVR ‡ < 0.66 | 80 (12.7%) | 26 (38.8%) | 106 (15.3%) | 0.000 |
Arteriovenous nicking | 407 (64.8%) | 45 (67.2%) | 452 (65.0%) | 0.701 |
Mycroaneurysms | 14 (2.2%) | 3 (4.5%) | 17 (2.4%) | 0.258 |
Flame hemorrhages | 0 (0.0%) | 1 (1.5%) | 1 (0.1%) | --- |
Soft exudades | 6 (1.0%) | 0 (0.0%) | 6 (0.9%) | 0.422 |
Hard exudates | 6 (1.0%) | 2 (3.0%) | 8 (1.2%) | 0.39 |
A-Adjusted Model | β Coefficient | OR (CI 95%) a | p |
---|---|---|---|
Constant | −3.252 | ||
REGICOR | |||
Low < 5 | Reference | ||
Moderate 5–10 | 0.652 | 1.92 (0.91–4.04) | 0.086 |
High > 10 | 1.150 | 3.16 (1.3–7.00) | 0.005 |
RAV < 0.66b,c | 1.493 | 4.45 (2.56–7.73) | <0.001 |
B-Interaction Model | β Coefficient | OR (CI 95%) a | p |
Constant | −2.570 | ||
AVR > 0.66 + Low REGICOR | Reference | ||
AVR < 0.66 + Moderate REGICOR | 1.184 | 3.27 (1.53–6.97) | 0.002 |
AVR <0.66 + High REGICOR | 2.570 | 13.07 (5.71–29.90) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forés, R.; Manresa, J.M.; López-Lifante, V.M.; Heras, A.; Delgado, P.; Vázquez, X.; Ruiz, S.; Alzamora, M.T.; Toran, P. Relationship between Retinal Microvasculature, Cardiovascular Risk and Silent Brain Infarction in Hypertensive Patients. Diagnostics 2021, 11, 937. https://doi.org/10.3390/diagnostics11060937
Forés R, Manresa JM, López-Lifante VM, Heras A, Delgado P, Vázquez X, Ruiz S, Alzamora MT, Toran P. Relationship between Retinal Microvasculature, Cardiovascular Risk and Silent Brain Infarction in Hypertensive Patients. Diagnostics. 2021; 11(6):937. https://doi.org/10.3390/diagnostics11060937
Chicago/Turabian StyleForés, Rosa, Josep M. Manresa, Victor M. López-Lifante, Antonio Heras, Pilar Delgado, Xose Vázquez, Susana Ruiz, Maria Teresa Alzamora, and Pere Toran. 2021. "Relationship between Retinal Microvasculature, Cardiovascular Risk and Silent Brain Infarction in Hypertensive Patients" Diagnostics 11, no. 6: 937. https://doi.org/10.3390/diagnostics11060937
APA StyleForés, R., Manresa, J. M., López-Lifante, V. M., Heras, A., Delgado, P., Vázquez, X., Ruiz, S., Alzamora, M. T., & Toran, P. (2021). Relationship between Retinal Microvasculature, Cardiovascular Risk and Silent Brain Infarction in Hypertensive Patients. Diagnostics, 11(6), 937. https://doi.org/10.3390/diagnostics11060937