Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT Protocol
2.3. Data Reconstruction
2.4. Radiomic Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Data Reconstruction and CT Texture Analysis (CTTA) Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganeshan, B.; Miles, K.A. Quantifying tumour heterogeneity with CT. Cancer Imaging 2013, 13, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Zerunian, M.; Caruso, D.; Zucchelli, A.; Polici, M.; Capalbo, C.; Filetti, M.; Mazzuca, F.; Marchetti, P.; Laghi, A. CT based radiomic approach on first line pembrolizumab in lung cancer. Sci. Rep. 2021, 11, 6633. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Zerunian, M.; Ciolina, M.; de Santis, D.; Rengo, M.; Soomro, M.H.; Giunta, G.; Conforto, S.; Schmid, M.; Neri, E.; et al. Haralick’s texture features for the prediction of response to therapy in colorectal cancer: A preliminary study. Radiol. Med. 2018, 123, 161–167. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, C.N.; Ciolina, M.; Caruso, D.; Rengo, M.; Ganeshan, B.; Meinel, F.G.; Musio, D.; De Felice, F.; Tombolini, V.; Laghi, A. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: Initial experience. Abdom. Radiol. 2016, 41, 1728–1735. [Google Scholar] [CrossRef]
- Marigliano, C.; Badia, S.; Bellini, D.; Rengo, M.; Caruso, D.; Tito, C.; Miglietta, S.; Palleschi, G.; Pastore, A.L.; Carbone, A.; et al. Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression. Technol. Cancer Res. Treat. 2019, 18, 1533033819878458. [Google Scholar] [CrossRef]
- Martini, I.; Polici, M.; Zerunian, M.; Panzuto, F.; Rinzivillo, M.; Landolfi, F.; Magi, L.; Caruso, D.; Eid, M.; Annibale, B.; et al. CT texture analysis of liver metastases in PNETs versus NPNETs: Correlation with histopathological findings. Eur. J. Radiol. 2020, 124, 108812. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.; Lee, J.M.; Joo, I.; Lee, S.; Kim, T.H.; Ganeshan, B. Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method. Korean J. Radiol. 2019, 20, 558–568. [Google Scholar] [CrossRef] [Green Version]
- Yasaka, K.; Akai, H.; Mackin, D.; Court, L.; Moros, E.; Ohtomo, K.; Kiryu, S. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability. Medicine 2017, 96, e6993. [Google Scholar] [CrossRef]
- Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring Computed Tomography Scanner Variability of Radiomics Features. Investig. Radiol. 2015, 50, 757–765. [Google Scholar] [CrossRef]
- Erdal, B.S.; Demirer, M.; Little, K.J.; Amadi, C.C.; Ibrahim, G.F.M.; O’Donnell, T.P.; Grimmer, R.; Gupta, V.; Prevedello, L.M.; White, R.D. Are quantitative features of lung nodules reproducible at different CT acquisition and reconstruction parameters? PLoS ONE 2020, 15, e0240184. [Google Scholar] [CrossRef]
- Prezzi, D.; Owczarczyk, K.; Bassett, P.; Siddique, M.; Breen, D.J.; Cook, G.J.R.; Goh, V. Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer. Eur. Radiol. 2019, 29, 5227–5235. [Google Scholar] [CrossRef] [Green Version]
- Geyer, L.L.; Schoepf, U.J.; Meinel, F.G.; Nance, J.W.; Bastarrika, G.; Leipsic, J.A.; Paul, N.S.; Rengo, M.; Laghi, A.; De Cecco, C.N. State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015, 276, 339–357. [Google Scholar] [CrossRef]
- Caruso, D.; De Santis, D.; Biondi, T.; Panvini, N.; Zerunian, M.; Rivosecchi, F.; Montesano, M.; Bellini, D.; Rengo, M.; Laghi, A. Half-dose Coronary Artery Calcium Scoring: Impact of Iterative Reconstruction. J. Thorac. Imaging 2019, 34, 18–25. [Google Scholar] [CrossRef]
- Caruso, D.; De Cecco, C.N.; Schoepf, U.J.; Felmly, L.M.; Varga-Szemes, A.; Mangold, S.; Canstein, C.; Allmendinger, T.; Fuller, S.R.; Laghi, A.; et al. Correction Factors for CT Coronary Artery Calcium Scoring Using Advanced Modeled Iterative Reconstruction Instead of Filtered Back Projection. Acad. Radiol. 2016, 23, 1480–1489. [Google Scholar] [CrossRef]
- De Cecco, C.N.; Muscogiuri, G.; Schoepf, U.J.; Caruso, D.; Wichmann, J.L.; Cannaò, P.M.; Canstein, C.; Fuller, S.R.; Snider, L.; Varga-Szemes, A.; et al. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur. J. Radiol. 2016, 85, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Mangold, S.; De Cecco, C.N.; Wichmann, J.L.; Canstein, C.; Varga-Szemes, A.; Caruso, D.; Fuller, S.R.; Bamberg, F.; Nikolaou, K.; Schoepf, U.J. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison. Eur. J. Radiol. 2016, 85, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Tesche, C.; De Cecco, C.N.; Schoepf, U.J.; Duguay, T.M.; Albrecht, M.H.; Caruso, D.; Varga-Szemes, A.; Lesslie, V.W.; Ebersberger, U.; Canstein, C.; et al. Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J. Cardiovasc. Comput. Tomogr. 2017, 11, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Goodenberger, M.H.; Wagner-Bartak, N.A.; Gupta, S.; Liu, X.; Yap, R.Q.; Sun, J.; Tamm, E.P.; Jensen, C.T. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions. J. Comput. Assist. Tomogr. 2018, 42, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Cho, J.; Oh, J.; Kim, D.; Kim, S.; Lee, S.; Lee, J. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: Comparison with the adaptive statistical iterative reconstruction technique. Br. J. Radiol. 2015, 88, 20150463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Kalra, M.K.; Gilman, M.D.; Hsieh, J.; Pien, H.H.; Digumarthy, S.R.; Shepard, J.A. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: A pilot study. Radiology 2011, 259, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Euler, A.; Solomon, J.; Marin, D.; Nelson, R.C.; Samei, E. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential. Am. J. Roentgenol. 2018, 210, 13011308. [Google Scholar] [CrossRef] [PubMed]
- Padole, A.; Ali Khawaja, R.D.; Kalra, M.K.; Singh, S. CT radiation dose and iterative reconstruction techniques. Am. J. Roentgenol. 2015, 204, W384–W392. [Google Scholar] [CrossRef]
- Nishii, T.; Kotoku, A.; Hori, Y.; Matsuzaki, Y.; Watanabe, Y.; Morita, Y.; Kono, A.K.; Matsuda, H.; Fukuda, T. Filtered back projection revisited in low-kilovolt computed tomography angiography: Sharp filter kernel enhances visualization of the artery of Adamkiewicz. Neuroradiology 2019, 61, 305–311. [Google Scholar] [CrossRef]
- Sodickson, A.; Baeyens, P.F.; Andriole, K.P.; Prevedello, L.M.; Nawfel, R.D.; Hanson, R.; Khorasani, R. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 2009, 251, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Berrington de González, A.; Mahesh, M.; Kim, K.P.; Bhargavan, M.; Lewis, R.; Mettler, F.; Land, C. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 2009, 169, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Thibault, J.B.; Sauer, K.D.; Bouman, C.A.; Hsieh, J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys. 2007, 34, 4526–4544. [Google Scholar] [CrossRef]
- Solomon, J.; Mileto, A.; Ramirez-Giraldo, J.C.; Samei, E. Diagnostic Performance of an Advanced Modeled Iterative Reconstruction Algorithm for Low-Contrast Detectability with a Third-Generation Dual-Source Multidetector CT Scanner: Potential for Radiation Dose Reduction in a Multireader Study. Radiology 2015, 275, 735–745. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Lubner, M.G.; Kim, D.H.; Tang, J.; Ruma, J.A.; del Rio, A.M.; Chen, G.H. Abdominal CT with model-based iterative reconstruction (MBIR): Initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. Am. J. Roentgenol. 2012, 199, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Ronald, J.; Vernuccio, F.; Nelson, R.C.; Ramirez-Giraldo, J.C.; Solomon, J.; Patel, B.N.; Samei, E.; Marin, D. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology 2019, 293, 583–591. [Google Scholar] [CrossRef]
- Midya, A.; Chakraborty, J.; Gönen, M.; Do, R.K.G.; Simpson, A.L. Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. J. Med. Imaging 2018, 5, 011020. [Google Scholar] [CrossRef] [PubMed]
p Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Texture Features | FBP vs. ASIR 10 | FBP vs. ASIR 20 | FBP vs. ASIR 30 | FBP vs. ASIR 40 | FBP vs. ASIR 50 | FBP vs. ASIR 60 | FBP vs. ASIR 70 | FBP vs. ASIR 80 | FBP vs. ASIR 90 | FBP vs. ASIR 100 | |
LIVER | Mean | 0.3086 | 0.0915 | 0.0202 | 0.017 | 0.1784 | 0.7772 | 0.1624 | 0.6789 | 0.1359 | 0.3816 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.7458 | 0.9818 | 0.2423 | 0.4267 | 0.3224 | 0.5603 | 0.7819 | 0.7662 | 0.8089 | 0.8997 | |
Kurtosis | 0.9544 | 0.3022 | 0.7583 | 0.4602 | 0.8883 | 0.8905 | 0.3393 | 0.6398 | 0.5437 | 0.2402 | |
KIDNEY | Mean | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.0004 | 0.0007 | 0.0014 | 0.0084 | 0.0076 | 0.0191 | 0.0189 | 0.0255 | 0.0455 | 0.0039 | |
Kurtosis | 0.1911 | 0.4786 | 0.8986 | 0.5717 | 0.8302 | 0.782 | 0.5265 | 0.6984 | 0.5194 | 0.8733 | |
SPLEEN | Mean | 0.0173 | 0.5802 | 0.3894 | 0.4175 | 0.0143 | 0.0886 | 0.4117 | 0.7228 | 0.4932 | 0.6254 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.2994 | 0.5019 | 0.8763 | 0.3017 | 0.1619 | 0.4204 | 0.878 | 0.3262 | 0.9454 | 0.7544 | |
Kurtosis | 0.0274 | 0.0806 | 0.0666 | 0.3008 | 0.3777 | 0.2696 | 0.2733 | 0.3978 | 0.2961 | 0.8402 | |
MUSCLE | Mean | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.844 | 0.7554 | 0.5952 | 0.8766 | 0.8646 | 0.265 | 0.4455 | 0.6281 | 0.4013 | 0.3018 | |
Kurtosis | 0.8118 | 0.9162 | 0.2451 | 0.5748 | 0.4268 | 0.5421 | 0.605 | 0.7219 | 0.9001 | 0.8274 |
p Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SSF | Texture Features | FBP vs. ASIR 10 | FBP vs. ASIR 20 | FBP vs. ASIR 30 | FBP vs. ASIR 40 | FBP vs. ASIR 50 | FBP vs. ASIR 60 | FBP vs. ASIR 70 | FBP vs. ASIR 80 | FBP vs. ASIR 90 | FBP vs. ASIR 100 |
SSF0 | Mean | 0.1073 | 0.3446 | 0.2228 | 0.2379 | 0.3423 | 0.6349 | 0.6235 | 0.9215 | 0.5029 | 0.6278 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | 0.0315 | 0.0069 | 0.0009 | 0.0012 | 0.0043 | 0.0075 | 0.0098 | 0.0270 | 0.0077 | 0.0230 | |
Skewness | 0.1495 | 0.2402 | 0.4741 | 0.3372 | 0.4219 | 0.6082 | 0.8381 | 0.8545 | 0.8677 | 0.6025 | |
Kurtosis | 0.4749 | 0.4437 | 0.1814 | 0.2282 | 0.5967 | 0.4581 | 0.1644 | 0.1711 | 0.1790 | 0.0724 | |
SSF2 | Mean | 0.3152 | 0.1430 | 0.1007 | 0.159 | 0.2756 | 0.3685 | 0.3174 | 0.4117 | 0.2582 | 0.3152 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.377 | 0.5052 | 0.4475 | 0.322 | 0.1715 | 0.2035 | 0.2735 | 0.2538 | 0.2116 | 0.1208 | |
Kurtosis | 0.7801 | 0.5771 | 0.7402 | 0.8523 | 0.8991 | 0.8574 | 0.733 | 0.7566 | 0.7142 | 0.5273 | |
SSF3 | Mean | 0.3433 | 0.126 | 0.0668 | 0.0662 | 0.1475 | 0.3848 | 0.1408 | 0.3116 | 0.1803 | 0.2582 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.6375 | 0.6069 | 0.9964 | 0.3372 | 0.2858 | 0.2441 | 0.2715 | 0.4207 | 0.2717 | 0.4429 | |
Kurtosis | 0.8737 | 0.7554 | 0.4551 | 0.2856 | 0.9875 | 0.6472 | 0.8629 | 0.5503 | 0.4836 | 0.888 | |
SSF4 | Mean | 0.7373 | 0.6044 | 0.3162 | 0.3936 | 0.6122 | 0.8156 | 0.4591 | 0.687 | 0.3251 | 0.5119 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.8109 | 0.6822 | 0.6839 | 0.8761 | 0.6464 | 0.6357 | 0.4522 | 0.3845 | 0.4406 | 0.223 | |
Kurtosis | 0.81 | 0.8385 | 0.7265 | 0.531 | 0.9949 | 0.9386 | 0.6713 | 0.992 | 0.9502 | 0.5297 | |
SSF5 | Mean | 0.7471 | 0.8662 | 0.9327 | 0.7856 | 0.9583 | 0.4163 | 0.9723 | 0.693 | 0.9299 | 0.8848 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | 0.1436 | 0.0517 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | 0.0033 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.5869 | 0.4436 | 0.591 | 0.8702 | 0.9113 | 0.7306 | 0.9732 | 0.7433 | 0.7151 | 0.6131 | |
Kurtosis | 0.7911 | 0.4026 | 0.9569 | 0.2716 | 0.7697 | 0.5892 | 0.8379 | 0.6917 | 0.5408 | 0.4489 | |
SSF6 | Mean | 0.6203 | 0.9877 | 0.9117 | 0.6203 | 0.8652 | 0.5796 | 0.765 | 0.9495 | 0.7564 | 0.8552 |
SD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Entropy | 0.7935 | 0.7242 | 0.0889 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
MPP | 0.0097 | 0.0045 | 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Skewness | 0.6368 | 0.9408 | 0.7817 | 0.4941 | 0,5471 | 0.3881 | 0.8335 | 0.9179 | 0.7651 | 0.8109 | |
Kurtosis | 0.4555 | 0.7421 | 0.4264 | 0.6368 | 0.6527 | 0.7013 | 0.7392 | 0.8953 | 0.3394 | 0.8918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, D.; Zerunian, M.; Pucciarelli, F.; Bracci, B.; Polici, M.; D’Arrigo, B.; Polidori, T.; Guido, G.; Barbato, L.; Polverari, D.; et al. Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients. Diagnostics 2021, 11, 1000. https://doi.org/10.3390/diagnostics11061000
Caruso D, Zerunian M, Pucciarelli F, Bracci B, Polici M, D’Arrigo B, Polidori T, Guido G, Barbato L, Polverari D, et al. Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients. Diagnostics. 2021; 11(6):1000. https://doi.org/10.3390/diagnostics11061000
Chicago/Turabian StyleCaruso, Damiano, Marta Zerunian, Francesco Pucciarelli, Benedetta Bracci, Michela Polici, Benedetta D’Arrigo, Tiziano Polidori, Gisella Guido, Luca Barbato, Daniele Polverari, and et al. 2021. "Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients" Diagnostics 11, no. 6: 1000. https://doi.org/10.3390/diagnostics11061000
APA StyleCaruso, D., Zerunian, M., Pucciarelli, F., Bracci, B., Polici, M., D’Arrigo, B., Polidori, T., Guido, G., Barbato, L., Polverari, D., Benvenga, A., Iannicelli, E., & Laghi, A. (2021). Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients. Diagnostics, 11(6), 1000. https://doi.org/10.3390/diagnostics11061000