Potential for Radiation Dose Reduction in Dual-Source Computed Tomography of the Lung in the Pediatric and Adolescent Population Compared to Digital Radiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. DSCT with Tin Prefiltration
2.3. DSCT Postprocessing
2.4. Posterior–Anterior DR
2.5. Image Analysis of DSCT and DR
2.6. DSCT Radiation Dose
2.7. DR Radiation Dose
2.8. Statistical Analysis
3. Results
3.1. Diagnostic Confidence
3.2. Anatomical Structures
3.3. Suspicious Lung Lesions
3.4. Radiation Dose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brenner, D.; Elliston, C.; Hall, E.; Berdon, W. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am. J. Roentgenol. 2001, 176, 289–296. [Google Scholar] [CrossRef] [Green Version]
- de Gonzalez, A.B.; Salotti, J.A.; McHugh, K.; Little, M.P.; Harbron, R.W.; Lee, C.; Ntowe, E.; Braganza, M.Z.; Parker, L.; Rajaraman, P.; et al. Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: Assessment of the impact of underlying conditions. Br. J. Cancer 2016, 114, 388–394. [Google Scholar] [CrossRef]
- Raff, G.L. Radiation dose from coronary CT angiography: Five years of progress. J. Cardiovasc. Comput. Tomogr. 2010, 4, 365–374. [Google Scholar] [CrossRef] [PubMed]
- May, M.S.; Brand, M.; Lell, M.M.; Sedlmair, M.; Allmendinger, T.; Uder, M.; Wuest, W. Radiation dose reduction in parasinus CT by spectral shaping. Neuroradiology 2017, 59, 169–176. [Google Scholar] [CrossRef]
- Haubenreisser, H.; Meyer, M.; Sudarski, S.; Allmendinger, T.; Schoenberg, S.O.; Henzler, T. Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100 kVp. Eur. J. Radiol. 2015, 84, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Leyendecker, P.; Faucher, V.; Labani, A.; Noblet, V.; Lefebvre, F.; Magotteaux, P.; Ohana, M.; Roy, C. Prospective evaluation of ultra-low-dose contrast-enhanced 100-kV abdominal computed tomography with tin filter: Effect on radiation dose reduction and image quality with a third-generation dual-source CT system. Eur. Radiol. 2019, 29, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Bodelle, B.; Fischbach, C.; Booz, C.; Yel, I.; Frellesen, C.; Kaup, M.; Beeres, M.; Vogl, T.J.; Scholtz, J.E. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: Effects on radiation parameters and image quality. Pediatr. Radiol. 2017, 47, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Vorona, G.A.; Ceschin, R.C.; Clayton, B.L.; Sutcavage, T.; Tados, S.S.; Panigraphy, A. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: A feasibility study. Pediatr. Radiol. 2011, 41, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Newell Jr, J.D.; Fuld, M.K.; Allmendinger, T.; Sieren, J.P.; Chan, K.S.; Guo, J.; Hoffman, E.A. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software. Investig. Radiol. 2015, 50, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Rompel, O.; Glockler, M.; Janka, R.; Dittrich, S.; Cesnjevar, R.; Lell, M.M.; Uder, M.; Hammon, M. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: Image quality and radiation dose reduction. Pediatr. Radiol. 2016, 46, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Lell, M.M.; May, M.S.; Brand, M.; Eller, A.; Buder, T.; Hofmann, E.; Uder, M.; Wuest, W. Imaging the parasinus region with a third-generation dual-source CT and the effect of tin filtration on image quality and radiation dose. Am. J. Neuroradiol. 2015, 36, 1225–1230. [Google Scholar] [CrossRef] [Green Version]
- Wetzl, M.; May, M.S.; Weinmann, D.; Hammon, M.; Treutlein, C.; Zeilinger, M.; Kiefer, A.; Trollmann, R.; Woelfle, J.; Uder, M.; et al. Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction: Potential for maximum radiation dose reduction. Pediatr. Radiol. 2020, 50, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.; Köhler, T.; Proksa, R. Noise and resolution in images reconstructed with FBP and OSC algorithms for CT. Med. Phys. 2007, 34, 585–598. [Google Scholar] [CrossRef]
- Wang, G.; Yu, H.; De Man, B. An outlook on X-ray CT research and development. Med. Phys. 2008, 35, 1051–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Thibault, J.B.; Bouman, C.A.; Sauer, K.D.; Hsieh, J. Fast model-based Xray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans. Image Process. 2011, 20, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Deak, P.D.; Smal, Y.; Kalender, W.A. Multisection CT protocols: Sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010, 257, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidenbusch, M.C.; Regulla, D.; Schneider, K. Radiation exposure of children in pediatric radiology. Part 3: Conversion coefficients for reconstruction of organ doses achieved during chest X-ray examinations. RoFo 2008, 180, 1061–1081. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroft, L.J.M.; van der Velden, L.; Girón, I.H.; Roelofs, J.J.H.; de Roos, A.; Geleijns, J. Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology. J. Thorac. Imaging 2019, 34, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Ebner, L.; Bütikofer, Y.; Ott, D.; Huber, A.; Landau, J.; Ross, J.E.; Heverhagen, J.T.; Christe, A. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted). Am. J. Roentgenol. 2015, 204, 727–735. [Google Scholar] [CrossRef]
- Miéville, F.A.; Berteloot, L.; Grandjean, A.; Ayestaran, P.; Gudinchet, F.; Schmidt, S.; Brunelle, F.; Bochud, F.O.; Verdun, F.R. Model-based iterative reconstruction in pediatric chest CT: Assessment of image quality in a prospective study of children with cystic fibrosis. Pediatr. Radiol. 2013, 43, 558–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, M.; Henzler, T.; Nance, J.W., Jr.; Haubenreisser, H.; Meyer, M.; Sudarski, S.; Schoenberg, S.O.; Neff, K.W.; Hagelstein, C. Radiation dose comparison between 70 kVp and 100 kVp with spectral beam shaping for non-contrast-enhanced pediatric chest computed tomography: A prospective randomized controlled study. Investig. Radiol. 2017, 52, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Martini, K.; Higashigaito, K.; Barth, B.K.; Baumueller, S.; Alkadhi, H.; Frauenfelder, T. Ultralow-dose CT with tin filtration for detection of solid and sub solid pulmonary nodules: A phantom study. Br. J. Radiol. 2015, 88, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerli, M.; Kluckert, T.; Knitel, M.; Wälti, S.; Desbiolles, L.; Rengier, F.; Warschkow, R.; Bauer, R.W.; Alkadhi, H.; Leschka, S.; et al. Ultralow dose CT for pulmonary nodule detection with chest x-ray equivalent dose—a prospective intra-individual comparative study. Eur. Radiol. 2017, 27, 3290–3299. [Google Scholar] [CrossRef] [PubMed]
- Grodic, S.; Morsbach, F.; Schmidt, B.; Allmendinger, T.; Flohr, T.; Husarik, D.; Baumueller, S.; Raupach, R.; Stolzmann, P.; Leschka, S.; et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: First performance evaluation of single energy scanning with spectral shaping. Investig. Radiol. 2014, 49, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dose Group | Sn96 | Sn64 | Sn32 | Digital Radiographs (DR) | p-Value * |
---|---|---|---|---|---|
Number of patients | 19 | 19 | 19 | 19 | |
Gender | 12 male, 7 female | 12 male, 7 female | 13 male, 6 female | 12 male, 7 female | |
Age: mean ± SD, median (range) | 12.6 ± 8.0 12.9 (1.3–28.3) | 13.9 ± 3.8 14.1 (5.6–18.9) | 12.7 ± 4.9 13.7 (4.8–21.5) | 12.8 ± 5.4 13.0 (2.9–22.5) | ANOVA: p = 0.956 |
Weight: mean ± SD | 39.5 ± 21.6 | 49.3 ± 15.8 | 46.5 ± 22.8 | 39.9 ± 16.2 | ANOVA: p = 0.497 |
Body mass index: mean ± SD | 18.7 ± 4.5 | 18.9 ± 3.0 | 19.1 ± 4.8 | 17.3 ± 2.7 | ANOVA: p = 0.620 |
Analysed Item | Reconstruction | Sn96 | Sn64 | Sn32 | DR | p-Values |
---|---|---|---|---|---|---|
Diagnostic confidence | FBP | 2.3 ± 0.6 | 1.8 ± 0.6 | 1.3 ± 0.3 | Sn96 vs. Sn64: p = 0.115; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.003 | |
ADMIRE 2 | 2.7 ± 0.4 | 2.5 ± 0.4 | 1.9 ± 0.4 | Sn96 vs. Sn64: p = 1; Sn96/Sn64 vs. Sn32: p < 0.001 | ||
ADMIRE 3 | 3.3 ± 0.5 | 2.9 ± 0.4 | 2.3 ± 0.4 | Sn96 vs. Sn64: p = 0.065; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.001 | ||
ADMIRE 4 | 3.4 ± 0.5 | 3.2 ± 0.5 | 2.7 ± 0.6 | 2.4 ± 0.5 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.013 | |
DR vs. Sn96/Sn64: p < 0.001; DR vs. Sn32: p = 0.505 | ||||||
Medium-sized vessels | FBP | 3.6 ± 0.7 | 3.3 ± 0.4 | 2.3 ± 0.5 | Sn96 vs. Sn64: p = 0.867 Sn96/Sn64 vs. Sn32: p < 0.001 | |
ADMIRE 2 | 3.7 ± 0.6 | 3.6 ± 0.4 | 3.0 ± 0.6 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.005 | ||
ADMIRE 3 | 3.8 ± 0.5 | 3.8 ± 0.4 | 3.1 ± 0.6 | Sn96 vs. Sn64: p = 1 Sn96/Sn64 vs. Sn32: p < 0.001 | ||
ADMIRE 4 | 3.8 ± 0.4 | 3.9 ± 0.2 | 3.4 ± 0.6 | 2.6 ± 0.6 | Sn96 vs. Sn64: p = 0.872; Sn96 vs. Sn32: p = 0.168; Sn64 vs. Sn32: p = 0.021 | |
DR vs. Sn96/Sn64: p < 0.001; DR vs. Sn32: p = 0.001 | ||||||
Small vessels | FBP | 2.4 ± 0.6 | 2.1 ± 0.4 | 1.3 ± 0.4 | Sn96 vs. Sn64: p = 0.229 Sn96/Sn64 vs. Sn32: p < 0.001 | |
ADMIRE 2 | 3.1 ± 0.6 | 2.7 ± 0.5 | 2.0 ± 0.7 | Sn96 vs. Sn64: p = 0.330; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.001 | ||
ADMIRE 3 | 3.1 ± 0.6 | 3.0 ± 0.4 | 2.1 ± 0.4 | Sn96 vs. Sn64: p = 1 Sn96/Sn64 vs. Sn32: p < 0.001 | ||
ADMIRE 4 | 3.2 ± 0.6 | 3.1 ± 0.4 | 2.5 ± 0.5 | 1.9 ± 0.6 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.001; Sn64 vs. Sn32: p = 0.002 | |
DR vs. Sn96/Sn64: p < 0.001; DR vs. Sn32: p = 0.004 | ||||||
Lung parenchyma | FBP | 2.1 ± 0.7 | 1.6 ± 0.5 | 1.2 ± 0.3 | Sn96 vs. Sn64: p = 0.094; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.028 | |
ADMIRE 2 | 2.7 ± 0.5 | 2.6 ± 0.5 | 1.8 ± 0.4 | Sn96 vs. Sn64: p = 1 Sn96/Sn64 vs. Sn32: p < 0.001 | ||
ADMIRE 3 | 2.7 ± 0.4 | 2.5 ± 0.5 | 2.1 ± 0.4 | Sn96 vs. Sn64: p = 0.881; Sn96 vs. Sn32: p = 0.003 Sn64 vs. Sn32: p = 0.097 | ||
ADMIRE 4 | 2.9 ± 0.5 | 2.9 ± 0.4 | 2.7 ± 0.5 | 1.2 ± 0.3 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.375; Sn64 vs. Sn32: p= 0.807 | |
DR vs. Sn96/Sn64/Sn32: p < 0.001 | ||||||
Lung fissures | FBP | 2.2 ± 0.6 | 2.2 ± 0.5 | 1.4 ± 0.6 | Sn96 vs. Sn64: p = 1 Sn96/Sn64 vs. Sn32: p < 0.001 | |
ADMIRE 2 | 2.8 ± 0.6 | 2.6 ± 0.7 | 1.8 ± 0.7 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.001 | ||
ADMIRE 3 | 2.8 ± 0.7 | 2.7 ± 0.6 | 2.0 ± 0.6 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.001; Sn64 vs. Sn32: p = 0.002 | ||
ADMIRE 4 | 2.8 ± 0.7 | 2.9 ± 0.6 | 2.3 ± 0.5 | 1.4 ± 0.4 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.014; Sn64 vs. Sn32: p = 0.001 | |
DR vs. Sn96/Sn64/Sn32: p < 0.001 | ||||||
Tertiary bronchi | FBP | 3.2 ± 0.6 | 2.8 ± 0.6 | 2.2 ± 0.5 | Sn96 vs. Sn64: p = 0.314; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.002 | |
ADMIRE 2 | 3.6 ± 0.5 | 3.4 ± 0.5 | 3.2 ± 0.6 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.034; Sn64 vs. Sn32: p = 0.511 | ||
ADMIRE 3 | 3.8 ± 0.4 | 3.8 ± 0.4 | 3.3 ± 0.6 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.02; Sn64 vs. Sn32: p = 0.004 | ||
ADMIRE 4 | 3.8 ± 0.4 | 3.7 ± 0.4 | 3.5 ± 0.5 | 1.6 ± 0.4 | Sn96 vs. Sn64: p = 1; Sn96 vs. Sn32: p = 0.182; Sn64 vs. Sn32: p = 0.611 | |
DR vs. Sn96/Sn64/Sn32: p < 0.001 |
Sn96ADM4 | Sn64ADM4 | Sn32ADM4 | DR | p-Value * | |
---|---|---|---|---|---|
Number of lesions | 74 | 68 | 67 | 68 | |
Lesions per patient | 3.7 | 3.6 | 3.6 | 3.6 | |
Size (mm) | 5.1 ± 4.3 | 5.9 ± 5.8 | 7.0 ± 5.5 | 5.9 ± 1.8 | DR vs. Sn96 vs. Sn64 vs. Sn32: ANOVA p = 0.121 |
Detectability | 3.4 ± 0.6 | 3.3 ± 0.7 | 3.0 ± 0.6 | 1.9 ± 0.8 | DR vs. Sn96/Sn64/Sn32: p < 0.001 Sn96 vs. Sn64: p = 0.779 Sn64 vs. Sn32: p = 0.343 Sn96 vs. Sn32: p = 0.009 |
Contrast | 2.9 ± 0.7 | 2.9 ± 0.6 | 2.7 ± 0.7 | 2.0 ± 0.6 | DR vs. Sn96/Sn64/Sn32: p < 0.001 Sn96 vs. Sn64: p = 0.969 Sn64 vs. Sn32: p = 0.873 Sn96 vs. Sn32: p = 0.378 |
Contour sharpness | 2.9 ± 0.7 | 2.8 ± 0.7 | 2.4 ± 0.7 | 1.9 ± 0.7 | DR vs. Sn96/Sn64/Sn32: p < 0.001 Sn96 vs. Sn64: p = 0.814 Sn64 vs. Sn32: p = 0.006 Sn96 vs. Sn32: p < 0.001 |
Sn96 | Sn64 | Sn32 | DR | p-Value * | |
---|---|---|---|---|---|
CTDIVol (mGy) | 0.34 ± 0.18 | 0.25 ± 0.09 | 0.13 ± 0.08 | Sn96 vs. Sn64: p = 0.13; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.011 | |
DLP (mGy∗cm) | 11.5 ± 7.5 | 9.0 ± 3.7 | 4.0 ± 2.6 | Sn96 vs. Sn64: p = 0.371; Sn96 vs. Sn32: p < 0.001; Sn64 vs. Sn32: p = 0.010 | |
DAP (cGy∗cm2) | 1.57 ± 0.75 | ||||
DE (mGy) | 0.015 ± 0.016 | ||||
ED (mSv) | 0.219 ± 0.096 | 0.149 ± 0.054 | 0.065 ± 0.035 | 0.007 ± 0.003 | Sn96/Sn64/Sn32 vs. DR: p < 0.001 Sn96 vs. Sn64: p = 0.094 |
ED of CT groups in multiples of DR | 31 | 21 | 9 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetzl, M.; May, M.S.; Weinmann, D.; Hammon, M.; Kopp, M.; Ruppel, R.; Trollmann, R.; Woelfle, J.; Uder, M.; Rompel, O. Potential for Radiation Dose Reduction in Dual-Source Computed Tomography of the Lung in the Pediatric and Adolescent Population Compared to Digital Radiography. Diagnostics 2021, 11, 270. https://doi.org/10.3390/diagnostics11020270
Wetzl M, May MS, Weinmann D, Hammon M, Kopp M, Ruppel R, Trollmann R, Woelfle J, Uder M, Rompel O. Potential for Radiation Dose Reduction in Dual-Source Computed Tomography of the Lung in the Pediatric and Adolescent Population Compared to Digital Radiography. Diagnostics. 2021; 11(2):270. https://doi.org/10.3390/diagnostics11020270
Chicago/Turabian StyleWetzl, Matthias, Matthias Stefan May, Daniel Weinmann, Matthias Hammon, Markus Kopp, Renate Ruppel, Regina Trollmann, Joachim Woelfle, Michael Uder, and Oliver Rompel. 2021. "Potential for Radiation Dose Reduction in Dual-Source Computed Tomography of the Lung in the Pediatric and Adolescent Population Compared to Digital Radiography" Diagnostics 11, no. 2: 270. https://doi.org/10.3390/diagnostics11020270
APA StyleWetzl, M., May, M. S., Weinmann, D., Hammon, M., Kopp, M., Ruppel, R., Trollmann, R., Woelfle, J., Uder, M., & Rompel, O. (2021). Potential for Radiation Dose Reduction in Dual-Source Computed Tomography of the Lung in the Pediatric and Adolescent Population Compared to Digital Radiography. Diagnostics, 11(2), 270. https://doi.org/10.3390/diagnostics11020270