Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Motion Model Preparation
2.2. PET Image Acquisition
2.3. MRI Data Acquisition
2.4. Motion Data Extraction from PET, 2D MRI, and 3D MRI
2.5. Motion Correction with PET, 2D MRI, and 3D MRI
2.6. PET Image Analysis
2.7. Motion Compensation
3. Results
3.1. Small Animal Molecular Sieve PET Imaging
3.2. PET, 2D MRI, 3D MRI, and Tagged MRI
3.3. Motion Estimation from PET and MRI Images
3.4. Regional Motion Estimation
3.5. Count, SNR, Contrast and FWHM Assessment in PET Image
3.6. Motion Corrected PET Image
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Fontaine, K.; Mulnix, T.; Onofrey, J.A.; Ren, S.; Panin, V.; Jones, J.; Casey, M.E.; Barnett, R.; Kench, P.; et al. Respiratory motion compensation for PET/CT with motion information derived from matched attenuation-corrected gated PET data. J. Nucl. Med. 2018, 59, 1480–1486. [Google Scholar] [CrossRef] [Green Version]
- Holman, B.F.; Cuplov, V.; Millner, L.; Endozo, R.; Maher, T.M.; Groves, A.M.; Hutton, B.F.; Thielemans, K. Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information. EJNMMI Phys. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, H.; Saito, O.; Tajiri, M.; Kimura, T.; Kuroiwa, D.; Shirai, T.; Inaniwa, T.; Fukahori, M.; Miki, K.; Fukuda, S. Commissioning of a respiratory gating system involving a pressure sensor in carbon-ion scanning radiotherapy. J. Appl. Clin. Med. Phys. 2019, 20, 37–42. [Google Scholar] [CrossRef]
- LoPresti, P.G.; Finn, W.E. Fiber-optic sensor system for rapid positioning of a microelectrode array. Appl. Opt. 1998, 37, 3426–3431. [Google Scholar] [CrossRef] [PubMed]
- Hurley, S.; Spangler-Bickell, M.; Deller, T.; Bradshaw, T.; Jansen, F.; McMillan, A. Data-driven rigid motion correction of PET brain images using list mode reconstruction. J. Nucl. Med. 2019, 60 (Suppl. 1), 1358. [Google Scholar]
- Guo, R.; Petibon, Y.; Ma, Y.; El Fakhri, G.; Ying, K.; Ouyang, J. MR-based motion correction for cardiac PET parametric imaging: A simulation study. EJNMMI Phys. 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Luengo Morato, Y.; Ovejero Paredes, K.; Lozano Chamizo, L.; Marciello, M.; Filice, M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers 2021, 13, 2989. [Google Scholar] [CrossRef]
- Meier, J.G.; Wu, C.C.; Cuellar, S.L.B.; Truong, M.T.; Erasmus, J.J.; Einstein, S.A.; Mawlawi, O.R. Evaluation of a novel elastic respiratory motion correction algorithm on quantification and image quality in abdominothoracic PET/CT. J. Nucl. Med. 2019, 60, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, E.; Teuho, J.; Koskinen, J.; Jafari Tadi, M.; Klén, R.; Siekkinen, R.; Rives Gambin, J.; Vasankari, T.; Saraste, A. A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. Sensors 2021, 21, 3983. [Google Scholar] [CrossRef] [PubMed]
- Ippoliti, M.; Lukas, M.; Brenner, W.; Schatka, I.; Furth, C.; Schaeffter, T.; Makowski, M.R.; Kolbitsch, C. Respiratory motion correction for enhanced quantification of hepatic lesions in simultaneous PET and DCE-MR imaging. Phys. Med. Biol. 2021, 66, 095012. [Google Scholar] [CrossRef]
- Zhong, Y.; Kalantari, F.; Zhang, Y.; Shao, Y.; Wang, J. Quantitative 4D-PET reconstruction for small animal using SMEIR-reconstructed 4D-CBCT. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 2, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Munoz, C.; Kunze, K.P.; Neji, R.; Vitadello, T.; Rischpler, C.; Botnar, R.M.; Nekolla, S.G.; Prieto, C. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: An initial clinical validation. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1975–1986. [Google Scholar] [CrossRef] [Green Version]
- Fuin, N.; Catalano, O.A.; Scipioni, M.; Canjels, L.P.; Izquierdo-Garcia, D.; Pedemonte, S.; Catana, C. Concurrent respiratory motion correction of abdominal PET and dynamic contrast-enhanced–MRI using a compressed sensing approach. J. Nucl. Med. 2018, 59, 1474–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, C.; Neji, R.; Kunze, K.P.; Nekolla, S.G.; Botnar, R.M.; Prieto, C. Respiratory-and cardiac motion-corrected simultaneous whole-heart PET and dual phase coronary MR angiography. Magn. Reson. Med. 2019, 81, 1671–1684. [Google Scholar] [CrossRef]
- Kyme, A.Z.; Fulton, R.R. Motion estimation and correction in SPECT, PET and CT. Phys. Med. Biol. 2021, 66, 18TR02. [Google Scholar] [CrossRef]
- Jaudet, C.; Filleron, T.; Weyts, K.; Didierlaurent, D.; Vallot, D.; Ouali, M.; Zerdoud, S.; Dierickx, O.L.; Caselles, O.; Courbon, F. Gated 18F-FDG PET/CT of the lung using a respiratory spirometric gating device: A feasibility study. J. Nucl. Med. Technol. 2019, 47, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shang, D.; Meng, X.; Sun, X.; Ma, Y.; Yu, J. Effects of respiratory motion on volumetric and positional difference of GTV in lung cancer based on 3DCT and 4DCT scanning. Oncol. Lett. 2019, 17, 2388–2392. [Google Scholar] [CrossRef] [Green Version]
- Nuvoli, S.; Fiore, V.; Babudieri, S.; Galassi, S.; Bagella, P.; Solinas, P.; Spanu, A.; Madeddu, G. The additional role of 18F-FDG PET/CT in prosthetic valve endocarditis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1744–1751. [Google Scholar] [PubMed]
- Avella, D.M.; Manjunath, Y.; Singh, A.; Deroche, C.B.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Mitchem, J.B.; Kwon, E.; Li, G.; Kaifi, J.T. 18F-FDG PET/CT total lesion glycolysis is associated with circulating tumor cell counts in patients with stage I to IIIA non-small cell lung cancer. Transl. Lung Cancer Res. 2020, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Mirus, M.; Tokalov, S.V.; Abramyuk, A.; Heinold, J.; Prochnow, V.; Zöphel, K.; Kotzerke, J.; Abolmaali, N. Noninvasive assessment and quantification of tumor vascularization using [18F] FDG-PET/CT and CE-CT in a tumor model with modifiable angiogenesis—An animal experimental prospective cohort study. EJNMMI Res. 2019, 9, 55. [Google Scholar] [CrossRef]
- Nie, S.; Hsiao, W.W.; Pan, W.; Yang, Z. Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. Int. J. Nanomed. 2011, 6, 151. [Google Scholar]
- Robin, P.; Bourhis, D.; Bernard, B.; Abgral, R.; Querellou, S.; Duc-Pennec, L.; Le Roux, P.-Y.; Salaün, P.-Y. Feasibility of Systematic Respiratory-Gated Acquisition in Unselected Patients Referred for 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Front. Med. 2018, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manber, R.; Thielemans, K.; Hutton, B.F.; Wan, S.; Fraioli, F.; Barnes, A.; Ourselin, S.; Arridge, S.; Atkinson, D. Clinical impact of respiratory motion correction in simultaneous PET/MR, using a joint PET/MR predictive motion model. J. Nucl. Med. 2018, 59, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Petibon, Y.; Sun, T.; Han, P.; Ma, C.; El Fakhri, G.; Ouyang, J. MR-based cardiac and respiratory motion correction of PET: Application to static and dynamic cardiac 18F-FDG imaging. Phys. Med. Biol. 2019, 64, 195009. [Google Scholar] [CrossRef]
- Yu, J.W.; Woo, S.-K.; Lee, Y.J.; Kim, J.S.; Lee, K.C.; Kim, M.H.; Ji, Y.H.; Kang, J.H.; Kim, B.I.; Choi, C.W. Region adaptive PET gating using internal motion estimation. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 2948–2951. [Google Scholar]
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine, 4th ed.; Elsevier Health Sciences, 2012; Available online: https://www.sciencedirect.com/book/9781416051985/physics-in-nuclear-medicine#book-info (accessed on 14 November 2021).
- Wagener, K.; Worm, M.; Pektor, S.; Schinnerer, M.; Thiermann, R.; Miederer, M.; Frey, H.; Rösch, F. Comparison of linear and hyperbranched polyether lipids for liposome shielding by 18F-radiolabeling and positron emission tomography. Biomacromolecules 2018, 19, 2506–2516. [Google Scholar] [CrossRef]
Estimated count (counts/s) in lung | ||
High-activity group | low-activity group | |
9.31 ± 0.36 | 3.49 ± 0.32 | |
8.12 ± 0.06 | 3.57 ± 0.45 | |
7.72 ± 0.09 | 3.27 ± 0.52 | |
Evaluated SNR in lung | ||
High-activity group | low-activity group | |
108.07 ± 11.01 | 32.57 ± 1.44 | |
51.69 ± 2.90 | 11.01 ± 2.87 | |
28.79 ± 0.61 | 8.96 ± 3.75 |
Static Image | 4 Bin Images | 8 Bin Images |
---|---|---|
1.91 ± 0.17 | 1.85 ± 0.22 | 1.83 ± 0.12 |
3.11 ± 0.01 | 2.58 ± 0.22 | 2.54 ± 0.18 |
Estimated count (counts/s) in liver | ||
High-activity group | low-activity group | |
4.17 ± 0.07 | 2.18 ± 0.06 | |
4.29 ± 0.26 | 2.08 ± 0.08 | |
4.18 ± 0.18 | 2.13 ± 0.12 | |
Evaluated SNR in liver | ||
High-activity group | low-activity group | |
40.89 ± 4.89 | 23.52 ± 4.40 | |
18.83 ± 0.50 | 11.49 ± 1.02 | |
13.52 ± 0.86 | 7.96 ± 0.58 |
Static Image | 4 Bin Images | 8 Bin Images |
---|---|---|
2.18 ± 0.06 | 2.39 ± 0.13 | 2.18 ± 0.07 |
3.16 ± 0.13 | 3.14 ± 0.00 | 2.94 ± 0.19 |
FWHM | Uncorrected | PET Motion Correction (Fiducial) | Using 3D MRI Motion Correction (VIBE) | Using 2D MRI Motion Correction (FLASH) | Using 2D MRI Motion Correction (Tagging) |
---|---|---|---|---|---|
Horizontal | 3.39 ± 0.08 | 3.31 ± 0.22 | 3.65 ± 0.05 | 2.99 ± 0.04 | 2.77 ± 0.06 |
Vertical | 5.03 ± 0.11 | 4.54 ± 0.26 | 4.59 ± 0.06 | 4.51 ± 0.05 | 4.05 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.-K.; Kim, B.-C.; Ryu, E.K.; Ko, I.O.; Lee, Y.J. Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation. Diagnostics 2021, 11, 2138. https://doi.org/10.3390/diagnostics11112138
Woo S-K, Kim B-C, Ryu EK, Ko IO, Lee YJ. Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation. Diagnostics. 2021; 11(11):2138. https://doi.org/10.3390/diagnostics11112138
Chicago/Turabian StyleWoo, Sang-Keun, Byung-Chul Kim, Eun Kyoung Ryu, In Ok Ko, and Yong Jin Lee. 2021. "Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation" Diagnostics 11, no. 11: 2138. https://doi.org/10.3390/diagnostics11112138
APA StyleWoo, S.-K., Kim, B.-C., Ryu, E. K., Ko, I. O., & Lee, Y. J. (2021). Low-Dose PET Imaging of Tumors in Lung and Liver Regions Using Internal Motion Estimation. Diagnostics, 11(11), 2138. https://doi.org/10.3390/diagnostics11112138