Overexpression of MLPH in Rectal Cancer Patients Correlates with a Poorer Response to Preoperative Chemoradiotherapy and Reduced Patient Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Mining of the Published Transcriptomic Rectal Cancer Dataset
2.2. Patients and Tumor Characteristics
2.3. Histopathologic and Immunohistochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Up-Regulation of the MLPH Gene Is the Most Significant Intracellular Protein Transport Factor Related to Preoperative Chemoradiotherapy
3.2. Clinicopathological Characteristics of Study Patients
3.3. Immunohistochemical Analysis
3.4. Prognostic Significance of MLPH Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEO | Gene Expression Omnibus |
NCBI | National Center for Biotechnology Information |
MLPH | melanophilin |
CT | computed tomography |
MRI | magnetic resonance imaging |
AJCC | American Joint Committee on Cancer |
FFPE | formalin-fixed paraffin-embedded |
TRG | tumor regression grade |
DSS | disease-specific survival |
LRFS | local recurrent-free survival |
MeFS | metastasis-free survival |
HR | hazard ratio |
CI | confidence interval |
TGF-β | transforming growth factor beta |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Sauer, R.; Becker, H.; Hohenberger, W.; Rodel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus Postoperative Chemoradiotherapy for Rectal Cancer. N. Engl. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Brink, M.; Stiggelbout, A.M.; van den Hout, W.B. Clinical nature and prognosis of locally recurrent rectal cancer after total mesorectal excision with or without preoperative radiotherapy. J. Clin. Oncol. 2004, 22, 3958–3964. [Google Scholar] [CrossRef]
- Rothman, J.E. Mechanisms of intracellular protein transport. Nat. Cell Biol. 1994, 372, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Rehling, P.; Rospert, S. Molecular chaperones and intracellular protein transport. Biochim. Biophys. Acta BBA Bioenerg. 2010, 1803, 639–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Shinogle, H.E.; Galeva, N.A.; Dobrowsky, R.T.; Blagg, B.S.J. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J. Biol. Chem. 2016, 291, 8309–8323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, H.; Deitmer, J. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int. J. Mol. Sci. 2021, 22, 3171. [Google Scholar] [CrossRef] [PubMed]
- Rödel, C.; Martus, P.; Papadoupolos, T.; Füzesi, L.; Klimpfinger, M.; Fietkau, R.; Liersch, T.; Hohenberger, W.; Raab, R.; Sauer, R.; et al. Prognostic Significance of Tumor Regression After Preoperative Chemoradiotherapy for Rectal Cancer. J. Clin. Oncol. 2005, 23, 8688–8696. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-F.; He, H.-L.; Wang, J.-Y.; Huang, H.-Y.; Wu, T.-F.; Hsing, C.-H.; Lee, S.-W.; Lee, H.-H.; Fang, J.-L.; Huang, W.-T.; et al. Fibroblast growth factor receptor 2 overexpression is predictive of poor prognosis in rectal cancer patients receiving neoadjuvant chemoradiotherapy. J. Clin. Pathol. 2014, 67, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Sheu, M.-J.; Li, C.-F.; Lin, C.-Y.; Lee, S.-W.; Lin, L.-C.; Chen, T.-J.; Ma, L.-J. Overexpression of ANXA1 confers independent negative prognostic impact in rectal cancers receiving concurrent chemoradiotherapy. Tumor Biol. 2014, 35, 7755–7763. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, A.-H.; Li, C.-F.; Wu, C.-Y.; Zhang, X.; DeLacerda, J.; You, M.J.; Han, F.; Cai, Z.; Jeong, Y.S.; Jin, G.; et al. A hypoxia-responsive TRAF6–ATM–H2AX signalling axis promotes HIF1α activation, tumorigenesis and metastasis. Nat. Cell Biol. 2017, 19, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Abba, M.; Sun, H.; Hawkins, K.A.; Drake, J.A.; Hu, Y.; Nunez, M.I.; Gaddis, S.; Shi, T.; Horvath, S.; Sahin, A.; et al. Breast Cancer Molecular Signatures as Determined by SAGE: Correlation with Lymph Node Status. Mol. Cancer Res. 2007, 5, 881–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgaz, J.L.; Benguria, A.; Sanchez-Martinez, C.; Ladhani, O.; Volpert, O.V.; Jimenez, B. Changes in the gene expression profile of A375 human melanoma cells induced by overexpression of multifunctional pigment epithelium-derived factor. Melanoma Res. 2011, 21, 285–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakkar, A.D.; Raj, H.; Chakrabarti, D.; Ravishankar; Saravanan, N.; Muthuvelan, B.; Balakrishnan, A.; Padigaru, M. Identification of Gene Expression Signature in Estrogen Receptor Positive Breast Carcinoma. Biomark. Cancer 2010, 2, BIC-S3793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, Y.; Zheng, T.; Wang, R.; Jia, D.; Zhang, W. MLPH Accelerates the Epithelial–Mesenchymal Transition in Prostate Cancer. OncoTargets Ther. 2020, 13, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzourene, H.; Bosman, F.T.; Seelentag, W.; Matter, M.; Coucke, P. Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer 2002, 94, 1121–1130. [Google Scholar] [CrossRef]
- Williamson, P.R.; Hellinger, M.D.; Larach, S.W.; Ferrara, A. Endorectal ultrasound of T3 and T4 rectal cancers after preoperative chemoradiation. Dis. Colon Rectum 1996, 39, 45–49. [Google Scholar] [CrossRef]
- Kwok, H.; Bissett, I.P.; Hill, G.L. Preoperative staging of rectal cancer. Int. J. Colorectal Dis. 2000, 15, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Radcliffe, A.G.; Newcombe, R.G.; Dallimore, N.S.; Bourne, M.W.; Williams, G.T. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. Br. J. Surg. 2003, 90, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Hodgman, C.G.; Maccarty, R.L.; Wolff, B.G.; May, G.R.; Berquist, T.H.; Sheedy, P.F.; Beart, R.W.; Spencer, R.J. Preoperative staging of rectal carcinoma by computed tomography and 0.15T magnetic resonance imaging. Dis. Colon Rectum 1986, 29, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-L.; Yang, S.-H.; Liang, W.-Y.; Kuo, Y.-J.; Lin, J.-K.; Lin, T.-C.; Chen, W.-S.; Jiang, J.-K.; Wang, H.-S.; Chang, S.-C.; et al. Carcinoembryonic antigen (CEA) level, CEA ratio, and treatment outcome of rectal cancer patients receiving pre-operative chemoradiation and surgery. Radiat. Oncol. 2013, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, S.; Watanabe, T.; Kiyomatsu, T.; Yasuda, K.; Nagawa, H. Prognostic significance of response to preoperative radiotherapy, lymph node metastasis, and CEA level in patients undergoing total mesorectal excision of rectal cancer. Int. J. Colorectal Dis. 2010, 25, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Oh, B.R.; Lim, S.W.; Huh, J.W.; Joo, J.K.; Kim, Y.J.; Kim, H.R. Clinical Significance of Tumor Regression Grade in Rectal Cancer with Preoperative Chemoradiotherapy. J. Korean Soc. Coloproctol. 2010, 26, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Smith, F.; Reynolds, J.; Miller, N.; Stephens, R.; Kennedy, M. Pathological and molecular predictors of the response of rectal cancer to neoadjuvant radiochemotherapy. Eur. J. Surg. Oncol. 2006, 32, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Moureau-Zabotto, L.; Farnault, B.; de Chaisemartin, C.; Esterni, B.; Lelong, B.; Viret, F.; Giovannini, M.; Monges, G.; Delpero, J.-R.; Bories, E.; et al. Predictive Factors of Tumor Response After Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer. Int. J. Radiat. Oncol. 2011, 80, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.; Hale, A.; Deakin, M.; Hand, P.; Adab, F.; Hall, C.; Williams, G.; Elder, J. A histopathological assessment of the response of rectal adenocarcinoma to combination chemo-radiotherapy: Relationship to apoptotic activity, p53 and bcl-2 expression. Eur. J. Surg. Oncol. 1998, 24, 169–173. [Google Scholar] [CrossRef]
- Xu, J.; Xie, M.; Zou, S.; Liu, X.; Li, X.; Xie, J.; Zhang, X. Interactions of allele E of the MC1R gene with FM and mutations in the MLPH gene cause the five-gray phenotype in the Anyi tile-like gray chicken. Genet. Mol. Res. 2016, 15, gmr15027633. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Torii, S.; Yi, Z.; Igarashi, M.; Okamoto, K.; Takeuchi, T.; Izumi, T. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett. 2002, 517, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Matesic, L.E.; Yip, R.; Reuss, A.E.; Swing, D.A.; O’Sullivan, T.N.; Fletcher, C.F.; Copeland, N.G.; Jenkins, N.A. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl. Acad. Sci. USA 2001, 98, 10238–10243. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Jain, R.; Hwang, J.S.; Weninger, W.; Beaumont, K.A.; Tikoo, S. RAB27A/Melanophilin Blocker Inhibits Melanoma Cell Motility and Invasion. J. Investig. Dermatol. 2020, 140, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, M.; Soudja, S.M.; Mas, A. Epithelial-mesenchymal-transition-like and TGFbeta pathways associated with autochthonous inflammatory melanoma development in mice. PLoS ONE 2012, 7, e49419. [Google Scholar] [CrossRef] [Green Version]
- Dancea, H.C.; Shareef, M.M.; Ahmed, M.M. Role of Radiation-induced TGF-beta Signaling in Cancer Therapy. Mol. Cell. Pharmacol. 2009, 1, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Teresa Pinto, A.; Laranjeiro Pinto, M.; Patricia Cardoso, A. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci. Rep. 2016, 6, 18765. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jin, Q.; Huang, F.; Tang, Z.; Huang, J. Effects of Rab27A and Rab27B on Invasion, Proliferation, Apoptosis, and Chemoresistance in Human Pancreatic Cancer Cells. Pancreas 2017, 46, 1173–1179. [Google Scholar] [CrossRef]
- Liu, J.; Gong, X.; Zhu, X.; Xue, D.; Liu, Y.; Wang, P. Rab27A overexpression promotes bladder cancer proliferation and chemoresistance through regulation of NF-kappaB signaling. Oncotarget 2017, 8, 75272–75283. [Google Scholar] [CrossRef] [Green Version]
Probe | Comparison Log Ratio | Comparison p-Value | Gene Symbol | Gene Name | Biological Process | Molecular Function |
---|---|---|---|---|---|---|
218211_s_at | 1.2845 | <0.0001 | MLPH | melanophilin | intracellular protein transport, melanocyte differentiation, melanosome localization, pigmentation, protein targeting | Rab GTPase binding, actin binding, metal ion binding, microtubule plus-end binding, myosin V binding, myosin binding, protein binding, zinc ion binding |
210735_s_at | 1.0681 | 0.0015 | CA12 | carbonic anhydrase XII | one-carbon compound metabolic process | carbonate dehydratase activity, lyase activity, metal ion binding, zinc ion binding |
203963_at | 1.0002 | <0.0001 | ||||
204508_s_at | 0.9739 | 0.0015 | ||||
215867_x_at | 0.7435 | 0.0009 | ||||
214164_x_at | 0.6384 | 0.0007 | ||||
214734_at | 0.7604 | <0.0001 | EXPH5 | exophilin 5 | intracellular protein transport | Rab GTPase binding, protein binding |
203889_at | 0.6559 | 0.0005 | SCG5 | secretogranin V (7B2 protein) | intracellular protein transport, neuropeptide signaling pathway, peptide hormone processing, protein folding, regulation of hormone secretion, transport | GTP binding, enzyme activator activity, enzyme inhibitor activity, protein binding, unfolded protein binding |
221638_s_at | −0.567 | 0.0059 | STX16 | syntaxin 16 | intra-Golgi vesicle-mediated transport, intracellular protein transport, protein transport, proteolysis, transport, vesicle-mediated transport | SNAP receptor activity, aminopeptidase activity, hydrolase activity, manganese ion binding, metal ion binding, peptidase activity, protein binding, protein transporter activity, zinc ion binding |
1558249_s_at | −0.5013 | 0.0042 | ||||
221499_s_at | −0.4584 | 0.0096 | ||||
225496_s_at | 0.5602 | 0.0062 | SYTL2 | synaptotagmin-like 2 | intracellular protein transport, transport, vesicle-mediated transport | Rab GTPase binding, neurexin binding, phosphopantetheine binding, protein binding, transporter activity, zinc ion binding |
232914_s_at | 0.4675 | 0.0025 | ||||
227134_at | 0.513 | 0.0067 | SYTL1 | synaptotagmin-like 1 | ATP synthesis coupled proton transport, intracellular protein transport, transport, vesicle-mediated transport | ATP binding, Rab GTPase binding, hydrogen ion transporting ATP synthase activity; rotational mechanism, hydrogen ion transporting ATPase activity; rotational mechanism, neurexin binding, protein binding, transporter activity |
221503_s_at | −0.4765 | 0.005 | KPNA3 | karyopherin alpha 3 (importin alpha 4) | NLS-bearing substrate import into nucleus, intracellular protein transport, protein complex assembly, protein import into nucleus, protein transport, transport | binding, nuclear localization sequence binding, protein binding, protein transporter activity |
1560434_x_at | −0.1892 | 0.0062 | CLTA | clathrin; light chain (Lca) | intracellular protein transport, protein complex assembly, vesicle-mediated transport | calcium ion binding, protein binding, protein transporter activity, structural molecule activity |
243880_at | 0.1621 | 0.0065 | GOSR2 | Golgi SNAP receptor complex member 2 | ER to Golgi vesicle-mediated transport, intracellular protein transport, membrane fusion, protein transport, transport, vesicle-mediated transport | receptor activity, transporter activity |
Parameter | No. | MLPH Expression | p-Value | ||
---|---|---|---|---|---|
Low Exp | High Exp | ||||
Gender | Male | 108 | 50 | 58 | 0.269 |
Female | 64 | 36 | 28 | ||
Age (years) | <70 | 106 | 48 | 58 | 0.117 |
≥70 | 66 | 38 | 28 | ||
Location from anal verge (cm) | <6 | 79 | 44 | 35 | 0.168 |
≥6 | 93 | 42 | 51 | ||
CEA level (ng/mL) | <5 | 114 | 67 | 47 | 0.001 * |
≥5 | 58 | 19 | 39 | ||
Pre-Tx tumor status (Pre-T) | T1–T2 | 81 | 48 | 33 | 0.022 * |
T3–T4 | 91 | 38 | 53 | ||
Pre-Tx nodal status (Pre-N) | N0 | 125 | 63 | 62 | 0.864 |
N1–N2 | 47 | 23 | 24 | ||
Post-Tx tumor status (Post-T) | T1–T2 | 86 | 67 | 19 | <0.001 * |
T3–T4 | 86 | 19 | 67 | ||
Post-Tx nodal status (Post-N) | N0 | 123 | 73 | 50 | <0.001 * |
N1–N2 | 49 | 13 | 36 | ||
Vascular invasion | Absent | 157 | 83 | 74 | 0.028 * |
Present | 15 | 3 | 12 | ||
Perineurial invasion | Absent | 167 | 85 | 82 | 0.368 |
Present | 5 | 1 | 4 | ||
Tumor regression grade | Grade 0–1 | 37 | 7 | 30 | <0.001 * |
Grade 2~3 | 118 | 67 | 51 | ||
Grade 4 | 17 | 12 | 5 |
Parameter | No. of Case | DSS | LRFS | MeFS | ||||
---|---|---|---|---|---|---|---|---|
No. of Event | p-Value | No. of Event | p-Value | No. of Event | p-Value | |||
Gender | Male | 108 | 20 | 0.9026 | 7 | 0.2250 | 17 | 0.3520 |
Female | 64 | 11 | 20 | 14 | ||||
Age | <70 | 106 | 19 | 0.8540 | 18 | 0.6615 | 20 | 0.7427 |
≥70 | 66 | 12 | 9 | 11 | ||||
Location from anal verge (cm) | <6 | 79 | 8 | 0.0473 * | 9 | 0.2411 | 15 | 0.7514 |
≥6 | 93 | 23 | 18 | 16 | ||||
CEA level (ng/mL) | <5 | 114 | 15 | 0.0216 * | 13 | 0.0179 * | 17 | 0.1460 |
≥5 | 58 | 16 | 14 | 14 | ||||
Pre-Tx tumor status (Pre-T) | T1–T2 | 81 | 10 | 0.0776 | 10 | 0.2261 | 11 | 0.1745 |
T3–T4 | 91 | 21 | 17 | 20 | ||||
Pre-Tx nodal status (Pre-N) | N0 | 125 | 19 | 0.0711 | 15 | 0.0070 * | 19 | 0.0973 |
N1–N2 | 47 | 21 | 12 | 12 | ||||
Post-Tx tumor status (Post-T) | T1–T2 | 86 | 7 | 0.0006 * | 7 | 0.0040 * | 8 | 0.0033 * |
T3–T4 | 86 | 24 | 20 | 23 | ||||
Post-Tx nodal status (Post-N) | N0 | 123 | 21 | 0.5998 | 16 | 0.1320 | 20 | 0.4634 |
N1-N2 | 49 | 10 | 11 | 11 | ||||
Vascular invasion | Absent | 157 | 25 | 0.0184 * | 21 | 0.0028 * | 27 | 0.4470 |
Present | 15 | 6 | 6 | 4 | ||||
Perineurial invasion | Absent | 167 | 29 | 0.2559 | 25 | 0.0940 | 30 | 0.9083 |
Present | 5 | 2 | 2 | 1 | ||||
Tumor regression grade | Grade 0–1 | 37 | 13 | 0.0038 * | 10 | 0.0090 * | 14 | 0.0006 * |
Grade 2~3 | 118 | 17 | 17 | 16 | ||||
Grade 4 | 17 | 1 | 0 | 1 | ||||
Down-stage after CCRT | Non-Sig. | 150 | 29 | 0.1651 | 24 | 0.5961 | 30 | 0.0853 |
Sig. (≥2) | 22 | 2 | 3 | 1 | ||||
MLPH expression | Low Exp. | 86 | 2 | <0.0001 * | 5 | 0.0002 * | 4 | <0.0001 * |
High Exp. | 86 | 29 | 22 | 27 |
Parameter | DSS | LRFS | MeFS | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Tumor regression grade | 1.682 | 0.836–3.387 | 0.145 | 2.653 | 1.216–5.793 | 0.014 * | 2.037 | 1.046–7.937 | 0.036 * |
MLPH expression | 10.110 | 2.178–46.920 | 0.003 * | 2.372 | 0.764–7.367 | 0.135 | 5.621 | 1.762–17.931 | 0.004 * |
Vascular invasion | 2.267 | 0.870–5.910 | 0.094 | 4.572 | 1.570–13.315 | 0.005 * | - | - | - |
Post-Tx tumor status (Post-T) | 1.213 | 0.500–2.938 | 0.669 | 1.323 | 0.502–3.482 | 0.571 | 1.138 | 0.473–2.738 | 0.772 |
Pre-Tx nodal status (Pre-N) | - | - | - | 2.456 | 1.069–5.647 | 0.034 * | - | - | |
Location from anal verge (cm) | 1.653 | 0.721–3.787 | 0.235 | - | - | - | |||
CEA level (ng/mL) | 1.615 | 0.773–3.375 | 0.202 | 0.786 | 0.338–1.828 | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-S.; Chen, C.-I.; Chen, H.-P.; Liu, K.-W.; Tsai, C.-J.; Yang, C.-C. Overexpression of MLPH in Rectal Cancer Patients Correlates with a Poorer Response to Preoperative Chemoradiotherapy and Reduced Patient Survival. Diagnostics 2021, 11, 2132. https://doi.org/10.3390/diagnostics11112132
Li W-S, Chen C-I, Chen H-P, Liu K-W, Tsai C-J, Yang C-C. Overexpression of MLPH in Rectal Cancer Patients Correlates with a Poorer Response to Preoperative Chemoradiotherapy and Reduced Patient Survival. Diagnostics. 2021; 11(11):2132. https://doi.org/10.3390/diagnostics11112132
Chicago/Turabian StyleLi, Wan-Shan, Chih-I Chen, Hsin-Pao Chen, Kuang-Wen Liu, Chia-Jen Tsai, and Ching-Chieh Yang. 2021. "Overexpression of MLPH in Rectal Cancer Patients Correlates with a Poorer Response to Preoperative Chemoradiotherapy and Reduced Patient Survival" Diagnostics 11, no. 11: 2132. https://doi.org/10.3390/diagnostics11112132
APA StyleLi, W.-S., Chen, C.-I., Chen, H.-P., Liu, K.-W., Tsai, C.-J., & Yang, C.-C. (2021). Overexpression of MLPH in Rectal Cancer Patients Correlates with a Poorer Response to Preoperative Chemoradiotherapy and Reduced Patient Survival. Diagnostics, 11(11), 2132. https://doi.org/10.3390/diagnostics11112132