Evaluation of a Novel Content-Based Image Retrieval System for the Differentiation of Interstitial Lung Diseases in CT Examinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Content-Based Image Retrieval System
2.3. Training of the Novices
2.4. Case Evaluation Using Web-Based Presentation and Answer Sheet
2.5. Statistical Analysis
- Three entered differential diagnoses containing the correct answer were awarded 1 point.
- Two entered differential diagnoses containing the correct answer were awarded 2 points.
- A correct differential diagnosis while being the sole answer given was awarded 3 points.
3. Results
3.1. Accuracy
3.2. Weighted Accuracy
3.3. Pattern Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Interstitial Lung Disease. Available online: https://radiopaedia.org/articles/interstitial-lung-disease (accessed on 2 June 2021).
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef]
- Kolb, M.; Bondue, B.; Pesci, A.; Miyazaki, Y.; Song, J.W.; Bhatt, N.Y.; Huggins, J.T.; Oldham, J.M.; Padilla, M.L.; Roman, J.; et al. Acute exacerbations of progressive-fibrosing interstitial lung diseases. Eur. Respir. Rev. 2018, 27, 180071. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Mantini, C.; Cipollone, F.; Giamberardino, M.A. Chest Imaging of Patients with Sarcoidosis and SARS-CoV-2 Infection. Current Evidence and Clinical Perspectives. Diagnostics 2021, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Alhiyari, M.; Ata, F.; Islam Alghizzawi, M.; Bint, I.B.A.; Salih Abdulhadi, A.; Yousaf, Z. Post COVID-19 fibrosis, an emerging complicationof SARS-CoV-2 infection. IDCases 2021, 23, e01041. [Google Scholar] [CrossRef] [PubMed]
- Schaefer-Prokop, C. HRCT patterns of the most important interstitial lung diseases. Radiologe 2014, 54, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Trusculescu, A.A.; Manolescu, D.; Tudorache, E.; Oancea, C. Deep learning in interstitial lung disease-how long until daily practice. Eur. Radiol. 2020, 30, 6285–6292. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Walsh, S.L.F.; Calandriello, L.; Silva, M.; Sverzellati, N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study. Lancet Respir. Med. 2018, 6, 837–845. [Google Scholar] [CrossRef]
- Lynch, D.A.; Sverzellati, N.; Travis, W.D.; Brown, K.K.; Colby, T.V.; Galvin, J.R.; Goldin, J.G.; Hansell, D.M.; Inoue, Y.; Johkoh, T.; et al. Diagnostic criteria for idiopathic pulmonary fibrosis: A Fleischner Society White Paper. Lancet Respir. Med. 2018, 6, 138–153. [Google Scholar] [CrossRef]
- Christe, A.; Peters, A.A.; Drakopoulos, D.; Heverhagen, J.T.; Geiser, T.; Stathopoulou, T.; Christodoulidis, S.; Anthimopoulos, M.; Mougiakakou, S.G.; Ebner, L. Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images. Investig. Radiol. 2019, 54, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Freer, T.W.; Ulissey, M.J. Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center. Radiology 2001, 220, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Fujioka, T.; Mori, M.; Kubota, K.; Kikuchi, Y.; Xiaotong, W.; Oyama, J.; Kimura, K.; Oda, G.; Nakagawa, T.; et al. Detection and Diagnosis of Breast Cancer Using Artificial Intelligence Based assessment of Maximum Intensity Projection Dynamic Contrast-Enhanced Magnetic Resonance Images. Diagnostics 2020, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B. Computer-Aided Diagnosis in Mammography Using Content-based Image Retrieval Approaches: Current Status and Future Perspectives. Algorithms 2009, 2, 828–849. [Google Scholar] [CrossRef]
- Meybaum, C.; Graff, M.; Fallenberg, E.M.; Leschber, G.; Wormanns, D. Contribution of CAD to the Sensitivity for Detecting Lung Metastases on Thin-Section CT-A Prospective Study with Surgical and Histopathological Correlation. Rofo 2020, 192, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dankerl, P.; Cavallaro, A.; Tsymbal, A.; Costa, M.J.; Suehling, M.; Janka, R.; Uder, M.; Hammon, M. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Acad. Radiol. 2013, 20, 1526–1534. [Google Scholar] [CrossRef]
- Brady, A.P.; Neri, E. Artificial Intelligence in Radiology-Ethical Considerations. Diagnostics 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, J.; Li, Q.; Appelbaum, D.; Doi, K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 2011, 41, 449–462. [Google Scholar] [CrossRef]
- Dankerl, P.; Hammon, M.; Tsymbal, A.; Cavallaro, A.; Achenbach, S.; Uder, M.; Janka, R. Evaluation of novice reader diagnostic performance in coronary CT angiography using an advanced cardiac software package. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G.; Tashkin, D.P.; Clements, P.J.; Li, G.; Brown, M.S.; Elashoff, R.; Gjertson, D.W.; Abtin, F.; Lynch, D.A.; Strollo, D.C.; et al. A computer-aided diagnosis system for quantitative scoring of extent of lung fibrosis in scleroderma patients. Clin Exp. Rheumatol. 2010, 28, S26–S35. [Google Scholar]
- Jun, S.; Park, B.; Seo, J.B.; Lee, S.; Kim, N. Development of a Computer-Aided Differential Diagnosis System to Distinguish Between Usual Interstitial Pneumonia and Non-specific Interstitial Pneumonia Using Texture- and Shape-Based Hierarchical Classifiers on HRCT Images. J. Digit. Imaging 2018, 31, 235–244. [Google Scholar] [CrossRef]
- Syed, A.B.; Zoga, A.C. Artificial Intelligence in Radiology: Current Technology and Future Directions. Semin. Musculoskelet. Radiol. 2018, 22, 540–545. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mikela Vilmun, B.; Frederik Carlsen, J.; Albrecht-Beste, E.; Ammitzbøl Lauridsen, C.; Bachmann Nielsen, M.; Lindskov Hansen, K. The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review. Diagnostics 2019, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir. Crit. Care Med. 2002, 165, 277–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richeldi, L.; Launders, N.; Martinez, F.; Walsh, S.L.F.; Myers, J.; Wang, B.; Jones, M.; Chisholm, A.; Flaherty, K.R. The characterisation of interstitial lung disease multidisciplinary team meetings: A global study. ERJ Open Res. 2019, 5, 00209-2018. [Google Scholar] [CrossRef] [Green Version]
Student 1 | Student 2 | Student 3 | |
---|---|---|---|
Number of Cases | 50 | 50 | 50 |
Correctly diagnosed unassisted | 9 | 14 | 22 |
Accuracy unassisted | 18.0% | 28.0% | 44.0% |
Corrrectly diagnosed CIBR-assisted | 42 | 41 | 45 |
Accuracy assisted | 84.0% | 82.0% | 90.0% |
Resident 1 | Resident 2 | Resident 3 | |
---|---|---|---|
Number of Cases | 50 | 50 | 50 |
Correctly diagnosed unassisted | 28 | 28 | 35 |
Accuracy unassisted | 56.0% | 56.0% | 70.0% |
Corrrectly diagnosed CBIR-assisted | 47 | 45 | 48 |
Accuracy CBIR-assisted | 94.0% | 90.0% | 96.0% |
Student 1 | Student 2 | Student 3 | |
---|---|---|---|
Points score unassisted | 25 | 37 | 66 |
Weighted accuracy unassisted | 16.7% | 17.3% | 44.0% |
Points score CBIR-assisted | 122 | 115 | 129 |
Weighted accuracy CBIR-assisted | 81.3% | 76.7% | 86.0% |
Resident 1 | Resident 2 | Resident 3 | |
---|---|---|---|
Points score unassisted | 81 | 76 | 99 |
Weighted accuracy unassisted | 54.0% | 50.7% | 66.0% |
Points score CBIR-assisted | 138 | 123 | 141 |
Weighted accuracy CBIR-assisted | 92.0% | 82.0% | 94.0% |
Student 1 | Student 2 | Student 3 | |
---|---|---|---|
Correctly determined patterns unassisted | 26 | 26 | 38 |
Pattern accuracy unassisted | 52.0% | 52.0% | 76.0% |
Correctly determined patterns CBIR-assisted | 42 | 42 | 41 |
Pattern accuracy CBIR-assisted | 84.0% | 84.0% | 82.0% |
Resident 1 | Resident 2 | Resident 3 | |
---|---|---|---|
Correctly determined patterns unassisted | 36 | 37 | 41 |
Pattern accuracy unassisted | 72.0% | 74.0% | 82.0% |
Correctly determined patterns CBIR-assisted | 42 | 42 | 44 |
Pattern accuracy CBIR-assisted | 84.0% | 84.0% | 88.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogarell, T.; Bayerl, N.; Wetzl, M.; Roth, J.-P.; Speier, C.; Cavallaro, A.; Uder, M.; Dankerl, P. Evaluation of a Novel Content-Based Image Retrieval System for the Differentiation of Interstitial Lung Diseases in CT Examinations. Diagnostics 2021, 11, 2114. https://doi.org/10.3390/diagnostics11112114
Pogarell T, Bayerl N, Wetzl M, Roth J-P, Speier C, Cavallaro A, Uder M, Dankerl P. Evaluation of a Novel Content-Based Image Retrieval System for the Differentiation of Interstitial Lung Diseases in CT Examinations. Diagnostics. 2021; 11(11):2114. https://doi.org/10.3390/diagnostics11112114
Chicago/Turabian StylePogarell, Tobias, Nadine Bayerl, Matthias Wetzl, Jan-Peter Roth, Christoph Speier, Alexander Cavallaro, Michael Uder, and Peter Dankerl. 2021. "Evaluation of a Novel Content-Based Image Retrieval System for the Differentiation of Interstitial Lung Diseases in CT Examinations" Diagnostics 11, no. 11: 2114. https://doi.org/10.3390/diagnostics11112114
APA StylePogarell, T., Bayerl, N., Wetzl, M., Roth, J.-P., Speier, C., Cavallaro, A., Uder, M., & Dankerl, P. (2021). Evaluation of a Novel Content-Based Image Retrieval System for the Differentiation of Interstitial Lung Diseases in CT Examinations. Diagnostics, 11(11), 2114. https://doi.org/10.3390/diagnostics11112114