Molecular Detection of Borrelia Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setups
- Supernatant and pelleted material.
- Different centrifugation time and speed.
- Extraction of deoxyribonucleic acid (DNA) and extraction of total nucleic acid (NA) and, consequently, the use of DNA versus complementary DNA (cDNA) as a template.
- Different sample volumes.
- Different storage and transportation conditions.
- CSF with leucocytosis and CSF without leucocytosis.
- CSF with erythrocytes and CSF without erythrocytes.
2.2. Collection of Cerebrospinal Fluid Samples
2.3. Culture, Bacterial Count, and Spiking of Cerebrospinal Fluid with Borrelia Strains
2.4. Extraction of Nucleic Acid and Synthesis of Complementary DNA
2.5. Detection of Borrelia spp. by a Genus-Specific Real-Time PCR (Setups I–IX)
2.6. Data Analysis
3. Results
3.1. Pre-Analytical Handling for Increased Analytical Sensitivity
3.1.1. Supernatant versus Pelleted Material (I)
3.1.2. Centrifugation Time and Speed (II)
3.1.3. DNA versus Complementary DNA as Template (III)
3.1.4. Sample Volumes (IV)
3.1.5. Storage and Transportation Conditions (V)
3.1.6. Samples with or without Leucocytosis (VI)
3.1.7. Samples with or without Erythrocytes (VII)
3.1.8. Reproducibility and Repeatability within and between Real-Time PCR Runs (VIII)
3.1.9. Application of the Optimised Pre-Analytical Protocol for Different Borrelia Species (IX)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Koedel, U.; Fingerle, V.; Pfister, H.W. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat. Rev. Neurol. 2015, 11, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Mygland, A.; Ljostad, U.; Fingerle, V.; Rupprecht, T.; Schmutzhard, E.; Steiner, I.; European Federation of Neurological, S. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur. J. Neurol. 2010, 17, e11–e14. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.; Vayssier-Taussat, M.; Estrada-Pena, A.; Potkonjak, A.; Mihalca, A.D.; Zeller, H. A new Borrelia on the block: Borrelia miyamotoi—A human health risk? Eur. Surveill. 2019, 24, 1800170. [Google Scholar] [CrossRef] [Green Version]
- Henningsson, A.J.; Asgeirsson, H.; Hammas, B.; Karlsson, E.; Parke, A.; Hoornstra, D.; Wilhelmsson, P.; Hovius, J.W. Two cases of Borrelia miyamotoi Meningitis, Sweden, 2018. Emerg. Infect. Dis. 2019, 25, 1965–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koetsveld, J.; Platonov, A.E.; Kuleshov, K.; Wagemakers, A.; Hoornstra, D.; Ang, W.; Szekeres, S.; van Duijvendijk, G.L.A.; Fikrig, E.; Embers, M.E.; et al. Borrelia miyamotoi infection leads to cross-reactive antibodies to the C6 peptide in mice and men. Clin. Microbiol. Infect. 2020, 26, 513.e1-513.e6. [Google Scholar] [CrossRef]
- Krause, P.J.; Fish, D.; Narasimhan, S.; Barbour, A.G. Borrelia miyamotoi infection in nature and in humans. Clin. Microbiol. Infect. 2015, 21, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Mayo Clinic Laboratories. Borrelia Miyamotoi Detection PCR, Blood. Available online: https://microbiology.testcatalog.org/show/BMIYB (accessed on 26 May 2020).
- Fryland, L.; Wilhelmsson, P.; Lindgren, P.E.; Nyman, D.; Ekerfelt, C.; Forsberg, P. Low risk of developing Borrelia burgdorferi infection in the south-east of Sweden after being bitten by a Borrelia burgdorferi-infected tick. Int. J. Infect. Dis. 2011, 15, e174–e181. [Google Scholar] [CrossRef] [Green Version]
- Golightly, M.G. Laboratory considerations in the diagnosis and management of Lyme borreliosis. Am. J. Clin. Pathol. 1993, 99, 168–174. [Google Scholar] [CrossRef]
- Hammers-Berggren, S.; Hansen, K.; Lebech, A.M.; Karlsson, M. Borrelia burgdorferi-specific intrathecal antibody production in neuroborreliosis: A follow-up study. Neurology 1993, 43, 169–175. [Google Scholar] [CrossRef]
- Magnarelli, L.A.; Anderson, J.F.; Johnson, R.C. Cross-reactivity in serological tests for Lyme disease and other spirochetal infections. J. Infect. Dis. 1987, 156, 183–188. [Google Scholar] [CrossRef]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef]
- Tjernberg, I.; Kruger, G.; Eliasson, I. C6 peptide ELISA test in the serodiagnosis of Lyme borreliosis in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Ruzic-Sabljic, E.; Cerar, T. Progress in the molecular diagnosis of Lyme disease. Expert Rev. Mol. Diagn. 2017, 17, 19–30. [Google Scholar] [CrossRef]
- Aguero-Rosenfeld, M.E.; Wang, G.; Schwartz, I.; Wormser, G.P. Diagnosis of Lyme borreliosis. Clin. Microbiol. Rev. 2005, 18, 484–509. [Google Scholar] [CrossRef] [Green Version]
- Lager, M.; Faller, M.; Wilhelmsson, P.; Kjelland, V.; Andreassen, A.; Dargis, R.; Quarsten, H.; Dessau, R.; Fingerle, V.; Margos, G.; et al. Molecular detection of Borrelia burgdorferi sensu lato—An analytical comparison of real-time PCR protocols from five different Scandinavian laboratories. PLoS ONE 2017, 12, e0185434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenova, D.; Krsek, D.; Sipkova, L.; Lukavska, A.; Maly, M.; Kurzova, Z.; Horejsi, J.; Kodym, P. Short-term stability of Borrelia garinii in cerebrospinal fluid. Folia Microbiol. 2016, 61, 45–50. [Google Scholar] [CrossRef]
- Deisenhammer, S.; Radon, K.; Nowak, D.; Reichert, J. Needlestick injuries during medical training. J. Hosp. Infect. 2006, 63, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.G. Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Med. 1984, 57, 521–525. [Google Scholar]
- Preac-Mursic, V.; Wilske, B.; Schierz, G. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1986, 263, 112–118. [Google Scholar] [CrossRef]
- Gyllemark, P.; Wilhelmsson, P.; Elm, C.; Hoornstra, D.; Hovius, J.W.; Johansson, M.; Tjernberg, I.; Lindgren, P.E.; Henningsson, A.J.; Sjowall, J. Are other tick-borne infections overlooked in patients investigated for Lyme neuroborreliosis? A large retrospective study from South-eastern Sweden. Ticks Tick Borne Dis. 2021, 12, 101759. [Google Scholar] [CrossRef]
- Barstad, B.; Quarsten, H.; Tveitnes, D.; Noraas, S.; Ask, I.S.; Saeed, M.; Bosse, F.; Vigemyr, G.; Huber, I.; Oymar, K. Direct molecular detection and genotyping of Borrelia burgdorferi Sensu Lato in cerebrospinal fluid of children with Lyme neuroborreliosis. J. Clin. Microbiol. 2018, 56, e01868-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forselv, K.J.N.; Lorentzen, A.R.; Ljostad, U.; Mygland, A.; Eikeland, R.; Kjelland, V.; Noraas, S.; Quarsten, H. Does more favourable handling of the cerebrospinal fluid increase the diagnostic sensitivity of Borrelia burgdorferi sensu lato-specific PCR in Lyme neuroborreliosis? Infect. Dis. 2018, 50, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Gooskens, J.; Templeton, K.E.; Claas, E.C.; van Dam, A.P. Evaluation of an internally controlled real-time PCR targeting the ospA gene for detection of Borrelia burgdorferi sensu lato DNA in cerebrospinal fluid. Clin. Microbiol. Infect. 2006, 12, 894–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picha, D.; Moravcova, L.; Vanousova, D.; Hercogova, J.; Blechova, Z. DNA persistence after treatment of Lyme borreliosis. Folia Microbiol. 2014, 59, 115–125. [Google Scholar] [CrossRef]
- Cerar, T.; Ogrinc, K.; Cimperman, J.; Lotric-Furlan, S.; Strle, F.; Ruzic-Sabljic, E. Validation of cultivation and PCR methods for diagnosis of Lyme neuroborreliosis. J. Clin. Microbiol. 2008, 46, 3375–3379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornstein, K.; Barbour, A.G. A reverse transcriptase-polymerase chain reaction assay of Borrelia burgdorferi 16S rRNA for highly sensitive quantification of pathogen load in a vector. Vector Borne Zoonotic Dis. 2006, 6, 103–112. [Google Scholar] [CrossRef]
- Brouqui, P.; Bacellar, F.; Baranton, G.; Birtles, R.J.; Bjoersdorff, A.; Blanco, J.R.; Caruso, G.; Cinco, M.; Fournier, P.E.; Francavilla, E.; et al. Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin. Microbiol. Infect. 2004, 10, 1108–1132. [Google Scholar] [CrossRef]
- Deisenhammer, F.; Bartos, A.; Egg, R.; Gilhus, N.E.; Giovannoni, G.; Rauer, S.; Sellebjerg, F.; Force, E.T. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol. 2006, 13, 913–922. [Google Scholar] [CrossRef]
- Turner, T.B.; Brayton, N.L. Factors Influencing the Survival of Spirochetes in the Frozen State. J. Exp. Med. 1939, 70, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.H.; Lin, P.H.; Tsai, K.W.; Wang, L.J.; Huang, Y.H.; Kuo, H.C.; Li, S.C. The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS ONE 2017, 12, e0184692. [Google Scholar] [CrossRef] [Green Version]
- Al-Soud, W.A.; Radstrom, P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 2001, 39, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebech, A.M.; Hansen, K.; Brandrup, F.; Clemmensen, O.; Halkier-Sorensen, L. Diagnostic value of PCR for detection of Borrelia burgdorferi DNA in clinical specimens from patients with erythema migrans and Lyme neuroborreliosis. Mol. Diagn. 2000, 5, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kalish, R.A.; McHugh, G.; Granquist, J.; Shea, B.; Ruthazer, R.; Steere, A.C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis. 2001, 33, 780–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experimental Setup | Parameter | Species | Extraction (D or S) | Concentration Range (Cells Per Sample before Extraction) | Centrifugation Material (P vs. SU) | Centrifugation Time (min) | Centrifugation Speed (˟ g) | Extraction Kit 1 | Template Type (cDNA and DNA) | Sample Volume (mL) | Storage Temperature (°C) 2 | Storage (Days) | Leucocytes (L vs. NL) | Erythrocytes (E vs. NE) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | Concentration | B. garinii | D | 10^4−10^0 | P and SU | 10 | 3000 | Total NA | cDNA | 1.0 | No storage | 0 | NL | NE |
II | Centrifugation (time and speed) | B. garinii | D | 10^4−10^0 | P | (1) 60 (2) 10 (3) 60 (4) 5 (5) non centrifuged | (1) 10,000 (2) 3000 (3) 18,840 (4) 500 (5) - | Total NA | cDNA | 1.0 | No storage | 0 | NL | NE |
III | Type of template | B. garinii | D | 10^4−10^0 | P | 10 | 3000 | Total NA and DNA | cDNA and DNA | 1.0 | No storage | 0 | NL | NE |
IV | Sample volume | B. garinii | D | 10^3 | P | 10 | 3000 | Total NA | cDNA | (1) 0.3 (2) 0.5 (3) 1.0 (4) 2.0 | No storage | 0 | NL | NE |
V | Storage and transportation * | B. garinii | D | 10^3 | P | 10 | 3000 | Total NA | cDNA | 1.0 | (1) No storage (ST) (2) Room temperature (T) (3) Refrigerator (2–8 °C) (ST) (4) Freezer (−20 °C) (ST) (5) Low-temperature freezer (−80 °C) (ST) | 0 1 3 7 14 30 | NL | NE |
VI | Leucocytes | B. garinii | D | 10^4−10^0 | P | 10 | 3000 | Total NA | cDNA | 1.0 | No storage | 0 | L and NL | NE |
VII | Erythrocytes | B. garinii | D | 10^4−10^0 | P | 10 | 3000 | Total NA | cDNA | 1.0 | No storage | 0 | NL | E and NE |
VIII | Reproducibility /repeatability | B. garinii | S | 10^4−10^0 | P | 10 | 3000 | Total NA | cDNA | 1.0 | No storage | 0 | NL | NE |
IX | Different strains | B. garinii B. afzelii B. burgdorferi sensu stricto B. miyamotoi | D | 10^4−10^0 | P | 10 | 3000 | Total NA | cDNA | 1.0 | No storage | 0 | NL | NE |
Concentration (Cells Per Sample before Extraction) | Supernatant, Mean Cq Value, (SD) * | Pelleted Material, Mean Cq Value, (SD) * | Difference in Mean Cq Value, (Cqsupernatant − Cq pelleted material) |
---|---|---|---|
10^4 | 30.30 (0.70) | 22.30 (0.81) | 8.00 |
10^3 | 34.20 (1.70) | 26.00 (0.96) | 8.20 |
10^2 | - | 29.80 (0.81) | - |
10^1 | - | 37.20 # (NC) | - |
10^0 | - | - | - |
Concentration (Cells Per Sample before Extraction) | Centrifugation Time (min) | Centrifugation Speed (× g) Ω | Mean Cq Value, (SD) * |
---|---|---|---|
10^4 | 60 | 10,000 | 22.10 (0.75) |
10^3 | 60 | 10,000 | 26.20 (0.52) |
10^2 | 60 | 10,000 | 31.60 (0.64) |
10^1 | 60 | 10,000 | 35.40 (0.51) |
10^0 | 60 | 10,000 | 34.10 # (NC) |
10^4 | 10 | 3000 | 22.60 (0.49) |
10^3 | 10 | 3000 | 26.50 (0.48) |
10^2 | 10 | 3000 | 31.60 (0.62) |
10^1 | 10 | 3000 | 34.90 (1.20) |
10^0 | 10 | 3000 | - |
10^4 | 60 | 18,840 | 24.90 (0.31) |
10^3 | 60 | 18,840 | 27.60 (0.20) |
10^2 | 60 | 18,840 | 33.80 (0.37) |
10^1 | 60 | 18,840 | 37.20 & (NC) |
10^0 | 60 | 18,840 | - |
10^4 | 5 | 500 | 22.50 (0.45) |
10^3 | 5 | 500 | 25.80 (0.38) |
10^2 | 5 | 500 | 31.80 (0.36) |
10^1 | 5 | 500 | 37.20 # (NC) |
10^0 | 5 | 500 | - |
Concentration (Cells Per Sample before Extraction) | EZ1 RNA Tissue Mini Kit, Mean Cq Value, (SD) * | EZ1 DNA TISSUE Mini Kit), Mean Cq Value, (SD) * | Difference in Mean Cq Value (CqRNA − CqDNA) |
---|---|---|---|
10^4 | 22.00 (0.45) | 24.10 (0.11) | 2.10 |
10^3 | 25.60 (0.21) | 28.70 (0.81) | 3.10 |
10^2 | 29.80 (0.46) | 30.80 (0.55) | 1.00 |
10^1 | 35.10 (0.29) | 36.90 (0.65) | 1.80 |
10^0 | - | 38.10 # (NC) | - |
Difference in Mean Cq Values | Mean Cq Value, (SD) * | ||||
---|---|---|---|---|---|
Volume (mL) | 0.3 | 0.5 | 1.0 | 2.0 | |
0.3 | 0.90 | 1.90 | 2.50 | 28.30 (0.09) | |
0.5 | 0.90 | 1.00 | 1.60 | 27.40 (0.41) | |
1.0 | 1.90 | 1.00 | 0.60 | 26.40 (0.14) | |
2.0 | 2.50 | 1.60 | 0.60 | 25.80 (0.14) |
Storage and Transportation Conditions (Temperature) | Storage/Transportation (ST Versus T) | Day 0, Mean Cq Value, (SD) * | Day 1, Mean Cq Value, (SD) * | Day 3, Mean Cq Value, (SD) * | Day 7, Mean Cq Value, (SD) * | Day 14, Mean Cq Value, (SD) * | Day 30, Mean Cq Value, (SD) * |
---|---|---|---|---|---|---|---|
No storage ** | 27.30 (0.15) | NP | NP | NP | NP | NP | |
Room temperature ** | T | NP | 22.80 (0.06) | 23.90 (0.06) | 25.30 (0.12) | NP | NP |
Refrigerator (+2–8 °C) | ST | NP | 27.70 (0.26) | 28.20 (0.17) | 29.50 (0.19) | 31.60 (0.82) | 31.60 (0.23) |
Freezer (−20 °C) | ST | NP | 27.90 (0.41) | 27.30 (0.17) | 28.10 (0.56) | 29.20 (0.14) | 27.50 (0.06) |
Low-temperature freezer (−80 °C) | ST | NP | 31.10 (0.30) | 30.80 (0.30) | 31.50 (0.18) | 32.20 (0.61) | 32.10 (0.31) |
Concentration (Cells Per Sample before Extraction) | Leucocytosis ¤, Mean Cq Value, (SD) * | Without Leucocytosis, Mean Cq Value, (SD) * | Difference in Mean Cq Values (Cqleucocytosis − Cqnon leucocytosis) |
---|---|---|---|
10^4 | 22.50 (0.90) | 21.30 (0.70) | 1.20 |
10^3 | 25.30 (0.32) | 24.00 (0.36) | 1.30 |
10^2 | 28.60 (0.38) | 28.20 (0.30) | 0.40 |
10^1 | 34.00 (1.72) ¶ | 35.10 (1.45) | 1.10 |
10^0 | - | - | - |
Concentration (Cells Per Sample before Extraction) | Erythrocytes $, Mean Cq Value, (SD)* | Without Erythrocytes, Mean Cq Value, (SD) * | Difference in Mean Cq Values (Cqerythrocytes − Cqnon erythrocytes) |
---|---|---|---|
10^4 | 28.10 (0.79) | 21.30 (0.70) | 6.80 |
10^3 | 29.30 (0.22) | 24.00 (0.36) | 5.30 |
10^2 | 32.40 (0.23) | 28.30 (0.30) | 4.10 |
10^1 | - | 35.10 (1.45) | - |
10^0 | - | - | - |
Sample ID | Between or within Analyses (B/W) | Mean Cq Value, (SD) α (Analysis 1) | Mean Cq Value, (Analysis 2) | Difference in Mean Cq (Cqanalysis 1−Cqanalysis 2) |
---|---|---|---|---|
1 | B | 22.80 | 23.20 | 0.39 |
2 | B | 22.30 | 22.60 | 0.28 |
2 | W | 22.70 (0.17) | ||
2 | W | |||
2 | W | |||
2 | W | |||
2 | W | |||
2 | W | |||
2 | W | |||
2 | W | |||
3 | B | 22.80 | 23.00 | 0.21 |
4 | B | 25.30 | 25.50 | 0.21 |
5 | B | 23.90 | 24.00 | 0.09 |
6 | B | 22.70 | 22.70 | 0.03 |
7 | B | 23.00 | 22.70 | 0.17 |
8 | B | 26.10 | 26.00 | 0.08 |
9 | B | 25.30 | 25.20 | 0.09 |
10 | B | 22.70 | 22.60 | 0.07 |
11 | B | 22.60 | 22.60 | 0.00 |
12 | B | 26.20 | 26.20 | 0.00 |
Concentration (Cells Per Sample before Extraction) | B. garinii Lu59, Mean Cq Value, (SD) * | B. burgdorferi Sensu Stricto B31, Mean Cq Value, (SD) * | B. afzelii Lu81, Mean Cq Value, (SD) * | B. miyamotoi HT31, Mean Cq Value, (SD) * |
---|---|---|---|---|
10^4 | 22.60 (0.49) | 20.40 (0.27) | 21.40 (0.11) | 23.00 (0.53) |
10^3 | 26.50 (0.48) | 23.90 (0.20) | 26.40 (0.18) | 26.20 (1.16) |
10^2 | 31.60 (0.62) | 28.00 (0.17) | 29.30 (0.11) | 29.50 (0.58) |
10^1 | 34.90 (1.20) | 35.30 (0.46) | 33.90 (1.39) | 34.50 (0.25) |
10^0 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lager, M.; Wilhelmsson, P.; Matussek, A.; Lindgren, P.-E.; Henningsson, A.J. Molecular Detection of Borrelia Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity. Diagnostics 2021, 11, 2088. https://doi.org/10.3390/diagnostics11112088
Lager M, Wilhelmsson P, Matussek A, Lindgren P-E, Henningsson AJ. Molecular Detection of Borrelia Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity. Diagnostics. 2021; 11(11):2088. https://doi.org/10.3390/diagnostics11112088
Chicago/Turabian StyleLager, Malin, Peter Wilhelmsson, Andreas Matussek, Per-Eric Lindgren, and Anna J. Henningsson. 2021. "Molecular Detection of Borrelia Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity" Diagnostics 11, no. 11: 2088. https://doi.org/10.3390/diagnostics11112088
APA StyleLager, M., Wilhelmsson, P., Matussek, A., Lindgren, P.-E., & Henningsson, A. J. (2021). Molecular Detection of Borrelia Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity. Diagnostics, 11(11), 2088. https://doi.org/10.3390/diagnostics11112088