Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Flow Cytometry
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Expression Profile of GITR/GITRL and 4-1BB/4-1BBL on Peripheral CLL, NK, T Cells and Healthy Individuals
3.3. 4-1BB Expression Is Prognostic of Outcome in CLL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burger, J.A.; O’Brien, S. Evolution of CLL treatment—From chemoimmunotherapy to targeted and individualized therapy. Nat. Rev. Clin. Oncol. 2018, 15, 510–527. [Google Scholar] [CrossRef]
- Rai, K.R.; Jain, P. Chronic lymphocytic leukemia (CLL)-Then and now. Am. J. Hematol. 2016, 91, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Fowler, N.; Kadia, T.; et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N. Engl. J. Med. 2019, 380, 2095–2103. [Google Scholar] [CrossRef]
- Robak, T.; Stilgenbauer, S.; Tedeschi, A. Front-line treatment of CLL in the era of novel agents. Cancer Treat. Rev. 2017, 53, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A. Treatment of Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2020, 383, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Bahlo, J.; Rhein, C.; Cramer, P.; Pflug, N.; Fischer, K.; Stilgenbauer, S.; Kreuzer, K.A.; Wendtner, C.M.; Eichhorst, B.; et al. The CLL12 trial protocol: A placebo-controlled double-blind Phase III study of ibrutinib in the treatment of early-stage chronic lymphocytic leukemia patients with risk of early disease progression. Future Oncol. 2015, 11, 1895–1903. [Google Scholar] [CrossRef]
- Hoechstetter, M.A.; Busch, R.; Eichhorst, B.; Buhler, A.; Winkler, D.; Eckart, M.J.; Vehling-Kaiser, U.; Schimke, H.; Jager, U.; Hurtz, H.J.; et al. Early, risk-adapted treatment with fludarabine in Binet stage A chronic lymphocytic leukemia patients: Results of the CLL1 trial of the German CLL study group. Leukemia 2017, 31, 2833–2837. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A. Treatment-naive CLL: Lessons from phase 2 and phase 3 clinical trials. Blood 2019, 134, 1796–1801. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [Green Version]
- Jamroziak, K.; Pula, B.; Walewski, J. Current Treatment of Chronic Lymphocytic Leukemia. Curr. Treat. Options Oncol 2017, 18, 5. [Google Scholar] [CrossRef]
- Vosoughi, T.; Bagheri, M.; Hosseinzadeh, M.; Ehsanpour, A.; Davari, N.; Saki, N. CD markers variations in chronic lymphocytic leukemia: New insights into prognosis. J. Cell. Physiol. 2019, 234, 19420–19439. [Google Scholar] [CrossRef]
- Gaidano, G.; Rossi, D. The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Cramer, P.; Hallek, M. Prognostic factors in chronic lymphocytic leukemia-what do we need to know? Nat. Rev. Clin. Oncol. 2011, 8, 38–47. [Google Scholar] [CrossRef] [PubMed]
- van Beek, A.A.; Zhou, G.; Doukas, M.; Boor, P.P.C.; Noordam, L.; Mancham, S.; Campos Carrascosa, L.; van der Heide-Mulder, M.; Polak, W.G.; Ijzermans, J.N.M.; et al. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int. J. Cancer 2019, 145, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Galuppo, M.; Nocentini, G.; Mazzon, E.; Ronchetti, S.; Esposito, E.; Riccardi, L.; Sportoletti, P.; Di Paola, R.; Bruscoli, S.; Riccardi, C.; et al. The glucocorticoid-induced TNF receptor family-related protein (GITR) is critical to the development of acute pancreatitis in mice. Br. J. Pharmacol. 2011, 162, 1186–1201. [Google Scholar] [CrossRef] [Green Version]
- Santucci, L.; Agostini, M.; Bruscoli, S.; Mencarelli, A.; Ronchetti, S.; Ayroldi, E.; Morelli, A.; Baldoni, M.; Riccardi, C. GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice. Gut 2007, 56, 52–60. [Google Scholar] [CrossRef]
- Grohmann, U.; Volpi, C.; Fallarino, F.; Bozza, S.; Bianchi, R.; Vacca, C.; Orabona, C.; Belladonna, M.L.; Ayroldi, E.; Nocentini, G.; et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat. Med. 2007, 13, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Knee, D.A.; Hewes, B.; Brogdon, J.L. Rationale for anti-GITR cancer immunotherapy. Eur. J. Cancer 2016, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, C.; Ronchetti, S.; Nocentini, G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin. Ther. Targets 2018, 22, 783–797. [Google Scholar] [CrossRef]
- Zhou, P.; Qiu, J.; L’Italien, L.; Gu, D.; Hodges, D.; Chao, C.C.; Schebye, X.M. Mature B cells are critical to T-cell-mediated tumor immunity induced by an agonist anti-GITR monoclonal antibody. J. Immunother. 2010, 33, 789–797. [Google Scholar] [CrossRef]
- Clouthier, D.L.; Watts, T.H. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev. 2014, 25, 91–106. [Google Scholar] [CrossRef]
- Schmiedel, B.J.; Werner, A.; Steinbacher, J.; Nuebling, T.; Buechele, C.; Grosse-Hovest, L.; Salih, H.R. Generation and Preclinical Characterization of a Fc-optimized GITR-Ig Fusion Protein for Induction of NK Cell Reactivity Against Leukemia. Mol. Ther. 2013, 21, 877–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltz, K.M.; Krusch, M.; Bringmann, A.; Brossart, P.; Mayer, F.; Kloss, M.; Baessler, T.; Kumbier, I.; Peterfi, A.; Kupka, S.; et al. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 2007, 21, 2442–2454. [Google Scholar] [CrossRef] [PubMed]
- Baltz, K.M.; Krusch, M.; Baessler, T.; Schmiedel, B.J.; Bringmann, A.; Brossart, P.; Salih, H.R. Neutralization of tumor-derived soluble glucocorticoid-induced TNFR-related protein ligand increases NK cell anti-tumor reactivity. Blood 2008, 112, 3735–3743. [Google Scholar] [CrossRef]
- Buechele, C.; Baessler, T.; Wirths, S.; Schmohl, J.U.; Schmiedel, B.J.; Salih, H.R. Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia 2012, 26, 991–1000. [Google Scholar] [CrossRef]
- di Ricco, M.L.; Ronin, E.; Collares, D.; Divoux, J.; Gregoire, S.; Wajant, H.; Gomes, T.; Grinberg-Bleyer, Y.; Baud, V.; Marodon, G.; et al. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-kappaB. Eur. J. Immunol. 2020, 50, 972–985. [Google Scholar] [CrossRef] [Green Version]
- Pedroza-Gonzalez, A.; Zhou, G.; Singh, S.P.; Boor, P.P.; Pan, Q.; Grunhagen, D.; de Jonge, J.; Tran, T.K.; Verhoef, C.; JN, I.J.; et al. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells ex vivo. Oncoimmunology 2015, 4, e1051297. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, H.; Lee, S.W.; Hong, H.; Potter, K.G.; Maeda-Yamamoto, M.; Kinoshita, T.; Kawakami, Y.; Mittler, R.S.; Kwon, B.S.; Ware, C.F.; et al. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood 2005, 106, 4241–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Z.; Schwarz, H. CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukoc. Biol 2011, 89, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Salih, H.R.; Kosowski, S.G.; Haluska, V.F.; Starling, G.C.; Loo, D.T.; Lee, F.; Aruffo, A.A.; Trail, P.A.; Kiener, P.A. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J. Immunol. 2000, 165, 2903–2910. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Wang, B.; Chen, A. The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J. Immunol. 2004, 173, 2428–2434. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.; Bansal-Pakala, P.; Croft, M. 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur. J. Immunol. 2002, 32, 521–529. [Google Scholar] [CrossRef]
- Buechele, C.; Baessler, T.; Schmiedel, B.J.; Schumacher, C.E.; Grosse-Hovest, L.; Rittig, K.; Salih, H.R. 4-1BB ligand modulates direct and Rituximab-induced NK-cell reactivity in chronic lymphocytic leukemia. Eur. J. Immunol. 2012, 42, 737–748. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef]
- Vence, L.; Bucktrout, S.L.; Fernandez Curbelo, I.; Blando, J.; Smith, B.M.; Mahne, A.E.; Lin, J.C.; Park, T.; Pascua, E.; Sai, T.; et al. Characterization and Comparison of GITR Expression in Solid Tumors. Clin. Cancer Res. 2019, 25, 6501–6510. [Google Scholar] [CrossRef] [Green Version]
- Hallek, M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2017, 92, 946–965. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabhan, C.; Rosen, S.T. Chronic lymphocytic leukemia: A clinical review. JAMA 2014, 312, 2265–2276. [Google Scholar] [CrossRef] [Green Version]
- Kauer, J.; Schwartz, K.; Tandler, C.; Hinterleitner, C.; Roerden, M.; Jung, G.; Salih, H.R.; Heitmann, J.S.; Märklin, M. CD105 (Endoglin) as negative prognostic factor in AML. Sci. Rep. 2019, 9, 18337. [Google Scholar] [CrossRef]
- Heitmann, J.S.; Hagelstein, I.; Hinterleitner, C.; Osburg, L.; Salih, H.R.; Kauer, J.; Marklin, M. Fc gamma receptor expression serves as prognostic and diagnostic factor in AML. Leuk. Lymphoma. 2020, 61, 2466–2474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Heitmann, J.S.; Clar, K.L.; Kropp, K.N.; Hinterleitner, M.; Engler, T.; Koch, A.; Hartkopf, A.D.; Zender, L.; Salih, H.R.; et al. Platelet-expressed immune checkpoint regulator GITRL in breast cancer. Cancer Immunol. Immunother. 2021. [Google Scholar] [CrossRef]
- Barsoumian, H.B.; Yolcu, E.S.; Shirwan, H. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression. PLoS ONE 2016, 11, e0153088. [Google Scholar] [CrossRef] [PubMed]
- Pauly, S.; Broll, K.; Wittmann, M.; Giegerich, G.; Schwarz, H. CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J. Leukoc. Biol. 2002, 72, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Pedros, C.; Altman, A.; Kong, K.F. Role of TRAFs in Signaling Pathways Controlling T Follicular Helper Cell Differentiation and T Cell-Dependent Antibody Responses. Front. Immunol. 2018, 9, 2412. [Google Scholar] [CrossRef]
- Nakaima, Y.; Watanabe, K.; Koyama, T.; Miura, O.; Fukuda, T. CD137 is induced by the CD40 signal on chronic lymphocytic leukemia B cells and transduces the survival signal via NF-kappaB activation. PLoS ONE 2013, 8, e64425. [Google Scholar] [CrossRef]
- Schmohl, J.U.; Nuebling, T.; Wild, J.; Kroell, T.; Kanz, L.; Salih, H.R.; Schmetzer, H. Expression of 4-1BB and its ligand on blasts correlates with prognosis of patients with AML. J. Investig. Med. 2016, 64, 1252–1260. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, Y.H.; Lee, D.G.; Oh, H.S.; Kim, K.H.; Park, S.H.; Lee, J.; Vinay, D.S.; Kwon, B.S. In vivo 4-1BB deficiency in myeloid cells enhances peripheral T cell proliferation by increasing IL-15. J. Immunol. 2015, 194, 1580–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melero, I.; Johnston, J.V.; Shufford, W.W.; Mittler, R.S.; Chen, L. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol. 1998, 190, 167–172. [Google Scholar] [CrossRef]
- Niu, L.; Strahotin, S.; Hewes, B.; Zhang, B.; Zhang, Y.; Archer, D.; Spencer, T.; Dillehay, D.; Kwon, B.; Chen, L.; et al. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J. Immunol. 2007, 178, 4194–4213. [Google Scholar] [CrossRef]
- Baessler, T.; Charton, J.E.; Schmiedel, B.J.; Grunebach, F.; Krusch, M.; Wacker, A.; Rammensee, H.G.; Salih, H.R. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 2010, 115, 3058–3069. [Google Scholar] [CrossRef] [PubMed]
Number of Patients (%) (Total Number of Patients n = 73) | |
---|---|
Sex | |
Male | 42 (58) |
Female | 31 (42) |
Median age at diagnosis (years) | 63 (range 36–80) |
Binet stage initial diagnosis | |
A | 48 (66) |
B | 15 (21) |
C | 6 (8) |
not available | 4 (5) |
Rai stage initial diagnosis | |
0 | 20 (27) |
I–II | 32 (44) |
III–IV | 6 (8) |
not available | 15 (21) |
Binet stage sample acquisition | |
A | 32 (44) |
B | 22 (30) |
C | 17 (23) |
not available | 2 (3) |
Rai stage sample acquisition | |
0 | 12 (16) |
I–II | 38 (53) |
III–IV | 21 (28) |
not available | 2 (3) |
IGHV mutational status | |
mutated | 10 (59) |
unmutated | 7 (41) |
CD38 expression | |
<20% | 43 (59) |
20–29% | 3 (4) |
≥30% | 15 (21) |
not available | 12 (16) |
Cytogenetics risk | |
favorable * | 5 (7) |
intermediate * | 4 (5) |
poor * | 10 (14) |
not available | 54 (74) |
TP53 mutation | |
Positive | 3 (4) |
negative | 20 (27) |
not available | 50 (68) |
Lymphocyte count (1/µL) | 43,984 (range 5366–320,330) |
Hb (g/dL) | 12.7 (range 7.9–16.8) |
Plt (1000/µL) | 183 (range 14–346) |
β-2 microglobuline (mg/L) | 3.7 (range 1.7–9.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaban, K.; Greiner, S.M.; Holzmayer, S.; Tandler, C.; Meyer, S.; Hinterleitner, C.; Salih, H.R.; Märklin, M.; Heitmann, J.S. Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL). Diagnostics 2021, 11, 2041. https://doi.org/10.3390/diagnostics11112041
Kaban K, Greiner SM, Holzmayer S, Tandler C, Meyer S, Hinterleitner C, Salih HR, Märklin M, Heitmann JS. Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL). Diagnostics. 2021; 11(11):2041. https://doi.org/10.3390/diagnostics11112041
Chicago/Turabian StyleKaban, Kübra, Sarah M. Greiner, Samuel Holzmayer, Claudia Tandler, Sophie Meyer, Clemens Hinterleitner, Helmut R. Salih, Melanie Märklin, and Jonas S. Heitmann. 2021. "Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL)" Diagnostics 11, no. 11: 2041. https://doi.org/10.3390/diagnostics11112041
APA StyleKaban, K., Greiner, S. M., Holzmayer, S., Tandler, C., Meyer, S., Hinterleitner, C., Salih, H. R., Märklin, M., & Heitmann, J. S. (2021). Immunoprofiling of 4-1BB Expression Predicts Outcome in Chronic Lymphocytic Leukemia (CLL). Diagnostics, 11(11), 2041. https://doi.org/10.3390/diagnostics11112041