Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Verbal Fluency Test
2.3. NIRS Measurement and Signal Analysis
2.4. Blood Collection and Metabolite Analysis
2.5. Statistical Analysis
3. Results
3.1. Subject Demographics and Clinical Data
3.2. Haemodynamic Response during the VFT
3.3. Metabolite Analysis
3.4. Differentiating MDD Patients from HCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pizzagalli, D.A. Depression, Stress, and Anhedonia: Toward a Synthesis and Integrated Model. Annu. Rev. Clin. Psychol. 2014, 10, 393–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression Across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, R.S.; Cha, D.S.; Soczynska, J.; Woldeyohannes, H.O.; Gallaugher, L.A.; Kudlow, P.; Alsuwaidan, M.; Baskaran, A. Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depress. Anxiety 2013, 30, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Rock, P.L.; Roiser, J.; Riedel, W.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2013, 44, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Smith, K. Mental health: A world of depression. Nature 2014, 515, 180–181. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Cui, R. Editorial: A Systematic Review of Depression. Curr. Neuropharmacol. 2015, 13, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Zhang, S.; Zheng, R.; Xu, L.; Wu, J. Effects of depression on heart rate variability in elderly patients with stable coronary artery disease. J. Evid.-Based Med. 2018, 11, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Bilello, J.A. Seeking an objective diagnosis of depression. Biomark. Med. 2016, 10, 861–875. [Google Scholar] [CrossRef]
- Hacimusalar, Y.; Esel, E. Suggested Biomarkers for Major Depressive Disorder. Arch. Neuropsychiatry 2017, 55, 280–290. [Google Scholar] [CrossRef]
- Gur, R.E.; Keshavan, M.S.; Lawrie, S.M. Deconstructing Psychosis With Human Brain Imaging. Schizophr. Bull. 2007, 33, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Cynthia, Y.; Lai, Y.; Charmaine, C.S.H.H.; Lim, R.; Roger, C.; Ho, M. Functional near-infrared spectroscopy in psychiatry. BJPsych Adv. 2017, 23, 324–330. [Google Scholar]
- Gsell, W.; De Sadeleer, C.; Marchalant, Y.; MacKenzie, E.T.; Schumann, P.; Dauphin, F. The use of cerebral blood flow as an index of neuronal activity in functional neuroimaging: Experimental and pathophysiological considerations. J. Chem. Neuroanat. 2000, 20, 215–224. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Szameitat, A.J.; Shen, S.; Sterr, A. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients—A pilot study. BMC Med. Imaging 2009, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Law, M.W.-M.; Khong, P.-L. Whole-Body PET/CT Scanning: Estimation of Radiation Dose and Cancer Risk. Radiology 2009, 251, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.F.; Yu, R.; Tang, T.-B.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Validating a functional near-infrared spectroscopy diagnostic paradigm for Major Depressive Disorder. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Husain, S.F.; Tang, T.-B.; Yu, R.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major depression and borderline personality disorder. EBioMedicine 2019, 51, 102586. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Versace, A.; Mechelli, A.; Hassel, S.; Quevedo, K.; Kupfer, D.J.; Phillips, M.L. Abnormal Amygdala-Prefrontal Effective Connectivity to Happy Faces Differentiates Bipolar from Major Depression. Biol. Psychiatry 2009, 66, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, G.N.; Kummer, A.; Salgado, J.V.; Portela, E.J.; Sousa-pereira, S.R.; David, A.S.; Teixeira, A.L. Psychiatric disorders in temporal lobe epilepsy: An overview from a tertiary service in Brazil. Seizure 2010, 19, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, D.W.; Daly, D. Psychiatric symptoms associated with lesions of temporal lobe. J. Am. Med. Assoc. 1952, 150, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, W.; Dang, W.; Quan, W.; Tian, J.; Chen, R.; Zhan, S.; Yu, X. Near-infrared spectroscopy for examination of prefrontal activation during cognitive tasks in patients with major depressive disorder: A meta-analysis of observational studies. Psychiatry Clin. Neurosci. 2014, 69, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Altamura, C.; Maes, M.; Dai, J.; Meltzer, H. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur. Neuropsychopharmacol. 1995, 5, 71–75. [Google Scholar] [CrossRef]
- Kofler, M.; Schiefecker, A.J.; Gaasch, M.; Sperner-Unterweger, B.; Fuchs, D.; Beer, R.; Ferger, B.; Rass, V.; Hackl, W.; Rhomberg, P.; et al. A reduced concentration of brain interstitial amino acids is associated with depression in subarachnoid hemorrhage patients. Sci. Rep. 2019, 9, 2811. [Google Scholar] [CrossRef] [Green Version]
- Demyer, M.K.; Shea, P.A.; Hendrie, H.C.; Yoshimura, N.N. Plasma Tryptophan and Five Other Amino Acids in Depressed and Normal Subjects. Arch. Gen. Psychiatry 1981, 38, 642–646. [Google Scholar] [CrossRef]
- Moreira, F.P.; Jansen, K.; Cardoso, T.D.A.; Mondin, T.C.; Magalhães, P.V.; Kapczinski, F.; Souza, L.D.; Da Silva, R.A.; Oses, J.P.; Wiener, C.D. Metabolic syndrome and psychiatric disorders: A population-based study. Rev. Bras. Psiquiatr. 2019, 41, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, J.A.; Reddy, P.; Davis-Lameloise, N.; Philpot, B.; Laatikainen, T.; Kilkkinen, A.; Bunker, S.; Best, J.; Vartiainen, E.; Lo, S.K.; et al. Depression: An Important Comorbidity With Metabolic Syndrome in a General Population. Diabetes Care 2008, 31, 2368–2373. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.L.; Ebert, M.H.; Goyer, P.F.; Jimerson, D.C.; Klein, W.J.; Bunney, W.E.; Goodwin, F.K. Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. Am. J. Psychiatry 1982, 139, 741–746. [Google Scholar] [CrossRef]
- Diehl, D.J.; Gershon, S. The role of dopamine in mood disorders. Compr. Psychiatry 1992, 33, 115–120. [Google Scholar] [CrossRef]
- Stockmeier, C.A. Neurobiology of serotonin in depression and suicide. Ann. N. Y. Acad. Sci. 1997, 836, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Van Praag, H.M. Depression, suicide and the metabolism of serotonin in the brain. J. Affect. Disord. 1982, 4, 275–290. [Google Scholar] [CrossRef]
- Munari, L.; Provensi, G.; Passani, M.B.; Galeotti, N.; Cassano, T.; Benetti, F.; Corradetti, R.; Blandina, P. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects. Int. J. Neuropsychopharmacol. 2015, 18, pyv045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Airaksinen, M.S.; Flügge, G.; Fuchs, E.; Panula, P. Histaminergic system in the tree shrew brain. J. Comp. Neurol. 1989, 286, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, K.S.; Tuomisto, L.; Laitinen, J.T. Endogenous serotonin modulates histamine release in the rat hypothalamus as measured by in vivo microdialysis. Eur. J. Pharmacol. 1995, 285, 159–164. [Google Scholar] [CrossRef]
- Brown, R.E.; Sergeeva, O.A.; Eriksson, K.S.; Haas, H.L. Convergent Excitation of Dorsal Raphe Serotonin Neurons by Multiple Arousal Systems (Orexin/Hypocretin, Histamine and Noradrenaline). J. Neurosci. 2002, 22, 8850–8859. [Google Scholar] [CrossRef] [PubMed]
- Brigitta, B. Pathophysiology of depression and mechanisms of treatment. Dialog. Clin. Neurosci. 2002, 4, 7–20. [Google Scholar]
- Anthony, T.G. Homeostatic responses to amino acid insufficiency. Anim. Nutr. 2015, 1, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Firk, C.; Markus, C.R. Review: Serotonin by stress interaction: A susceptibility factor for the development of depression? J. Psychopharmacol. 2007, 21, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.E. The role of noradrenaline in depression: A review. J. Psychopharmacol. 1997, 11, S39–S49. [Google Scholar]
- McLean, A.; Rubinsztein, J.S.; Robbins, T.W.; Sahakian, B.J. The effects of tyrosine depletion in normal healthy volunteers: Implications for unipolar depression. Psychopharmacology 2003, 171, 286–297. [Google Scholar] [CrossRef]
- Lakhan, S.E.; Vieira, K.F. Nutritional therapies for mental disorders. Nutr. J. 2008, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucca, A.; Lucini, V.; Catalano, M.; Smeraldi, E. Neutral amino acid availability in two major psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1995, 19, 615–626. [Google Scholar] [CrossRef]
- Chen, J.-J.; Zhou, C.-J.; Liu, Z.; Fu, Y.-Y.; Zheng, P.; Yang, D.-Y.; Li, Q.; Mu, J.; Wei, Y.-D.; Zhou, J.-J.; et al. Divergent Urinary Metabolic Phenotypes between Major Depressive Disorder and Bipolar Disorder Identified by a Combined GC–MS and NMR Spectroscopic Metabonomic Approach. J. Proteome Res. 2015, 14, 3382–3389. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Ali, S.; Karmoker, J.R.; Kadir, M.F.; Ahmed, M.U.; Nahar, Z.; Islam, S.M.A.; Islam, M.S.; Hasnat, A.; Islam, S. Evaluation of serum amino acids and non-enzymatic antioxidants in drug-naïve first-episode major depressive disorder. BMC Psychiatry 2020, 20, 333. [Google Scholar] [CrossRef]
- Xu, H.-B.; Fang, L.; Hu, Z.-C.; Chen, Y.-C.; Chen, J.-J.; Li, F.-F.; Lu, J.; Mu, J.; Xie, P. Potential clinical utility of plasma amino acid profiling in the detection of major depressive disorder. Psychiatry Res. 2012, 200, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.T.; MahmoudianDehkordi, S.; Bhattacharyya, S.; Arnold, M.; Liu, D.; Neavin, D.; Moseley, M.A.; Thompson, J.W.; Williams, L.S.J.; Louie, G.; et al. Acylcarnitine metabolomic profiles inform clinically-defined major depressive phenotypes. J. Affect. Disord. 2019, 264, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Dinoff, A.; Saleem, M.; Herrmann, N.; Mielke, M.M.; Oh, P.I.; Venkata, S.L.V.; Haughey, N.J.; Lanctôt, K.L. Plasma sphingolipids and depressive symptoms in coronary artery disease. Brain Behav. 2017, 7, e00836. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Dietary Precursors and Brain Neurotransmitter Formation. Annu. Rev. Med. 1981, 32, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Inoshita, M.; Umehara, H.; Watanabe, S.-Y.; Nakataki, M.; Kinoshita, M.; Tomioka, Y.; Tajima, A.; Numata, S.; Ohmori, T. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 2018, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.; Prvulovic, D. Novel biomarkers in major depression. Curr. Opin. Psychiatry 2013, 26, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Breitenstein, B.; Scheuer, S.; Holsboer, F. Are there meaningful biomarkers of treatment response for depression? Drug Discov. Today 2014, 19, 539–561. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the Hamilton depression rating scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Ehlis, A.-C.; Fallgatter, A. Frontal activation during a verbal-fluency task as measured by near-infrared spectroscopy. Brain Res. Bull. 2003, 61, 51–56. [Google Scholar] [CrossRef]
- Herrmann, M.; Walter, A.; Ehlis, A.-C.; Fallgatter, A. Cerebral oxygenation changes in the prefrontal cortex: Effects of age and gender. Neurobiol. Aging 2006, 27, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.E.; Sharp, C.A. Age-Related Impairment in Executive Functioning: Updating, Inhibition, Shifting, and Access. J. Clin. Exp. Neuropsychol. 2004, 26, 874–890. [Google Scholar] [CrossRef]
- Takizawa, R.; Kasai, K.; Kawakubo, Y.; Marumo, K.; Kawasaki, S.; Yamasue, H.; Fukuda, M. Reduced frontopolar activation during verbal fluency task in schizophrenia: A multi-channel near-infrared spectroscopy study. Schizophr. Res. 2008, 99, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, H.; Yamagata, B.; Kawasaki, S.; Pu, S.; Iwanami, A.; Hirano, J.; Nakagome, K.; Mimura, M. A Longitudinal Functional Neuroimaging Study in Medication-Naïve Depression after Antidepressant Treatment. PLoS ONE 2015, 10, e0120828. [Google Scholar] [CrossRef] [Green Version]
- Okada, E.; Delpy, D.T. Near-infrared light propagation in an adult head model I Modeling of low-level scattering in the cerebrospinal fluid layer. Appl. Opt. 2003, 42, 2906–2914. [Google Scholar] [CrossRef] [PubMed]
- Okada, E.; Delpy, D.T. Near-infrared light propagation in an adult head model II Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl. Opt. 2003, 42, 2915–2921. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.H.; Huang, C.-J.; Sun, C.-W. The Potential Role of Functional Near-Infrared Spectroscopy as Clinical Biomarkers in Schizophrenia. Curr. Pharm. Des. 2020, 26, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, H.; Tokumasu, K.; Hashimoto, S.; Okamoto, M.; Yamashina, S. Three-dimensional analysis of morphological aspects of the human utricular macula. Ann. Otol. Rhinol. Laryngol. 2003, 112, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, D.; Dan, I. Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. NeuroImage 2013, 85, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Yahata, N.; Funane, T.; Takizawa, R.; Katura, T.; Atsumori, H.; Nishimura, Y.; Kinoshita, A.; Kiguchi, M.; Koizumi, H.; et al. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. Neuroimage 2013, 83, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, R.; Fukuda, M.; Kawasaki, S.; Kasai, K.; Mimura, M.; Pu, S.; Noda, T.; Niwa, S.-I.; Okazaki, Y. Neuroimaging-aided differential diagnosis of the depressive state. NeuroImage 2013, 85, 498–507. [Google Scholar] [CrossRef]
- Chou, P.-H.; Yao, Y.-H.; Zheng, R.-X.; Liou, Y.-L.; Liu, T.-T.; Lane, H.-Y.; Yang, A.C.; Wang, S.-C. Deep Neural Network to Differentiate Brain Activity Between Patients With First-Episode Schizophrenia and Healthy Individuals: A Multi-Channel Near Infrared Spectroscopy Study. Front. Psychiatry 2021, 12. [Google Scholar] [CrossRef]
- Jichi Medical University. NIRS Tools. 2010. Available online: http://www.jichi.ac.jp/brainlab/tools.html (accessed on 20 November 2020).
- Kovalik, J.-P.; Zhao, X.; Gao, F.; Leng, S.; Chow, V.; Chew, H.; Teo, L.L.; Tan, R.S.; Ewe, S.H.; Tan, H.C.; et al. Amino acid differences between diabetic older adults and non-diabetic older adults and their associations with cardiovascular function. J. Mol. Cell. Cardiol. 2021, 158, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Dan, I. Exploring the false discovery rate in multichannel NIRS. NeuroImage 2006, 33, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Suto, T.; Fukuda, M.; Ito, M.; Uehara, T.; Mikuni, M. Multichannel near-infrared spectroscopy in depression and schizophrenia: Cognitive brain activation study. Biol. Psychiatry 2004, 55, 501–511. [Google Scholar] [CrossRef]
- Qin, J.; Liu, H.; Wei, M.; Zhao, K.; Chen, J.; Zhu, J.; Shen, X.; Yan, R.; Yao, Z.; Lu, Q. Reconfiguration of hub-level community structure in depressions: A follow-up study via diffusion tensor imaging. J. Affect. Disord. 2017, 207, 305–312. [Google Scholar] [CrossRef]
- Halari, R.; Simic, M.; Pariante, C.M.; Papadopoulos, A.; Cleare, A.; Brammer, M.; Fombonne, E.; Rubia, K. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls. J. Child Psychol. Psychiatry 2009, 50, 307–316. [Google Scholar] [CrossRef]
- Okada, G.; Okamoto, Y.; Yamashita, H.; Ueda, K.; Takami, H.; Yamawaki, S. Attenuated prefrontal activation during a verbal fluency task in remitted major depression. Psychiatry Clin. Neurosci. 2009, 63, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Shi, D.; Gao, Y.; Xu, J. Functional assessment of prefrontal lobes in patients with major depression disorder using a dual-mode technique of 3D-arterial spin labeling and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Exp. Ther. Med. 2017, 14, 1058–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.; Zhang, H.; Xuan, A.; Gao, Y.; Xu, J.; Shi, D. A combined study of 18F-FDG PET-CT and fMRI for assessing resting cerebral function in patients with major depressive disorder. Exp. Ther. Med. 2018, 16, 1873–1881. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, H.; Zobel, A.; Joe, A.; Biermann, K.; Scheef, L.; Schuhmacher, A.; von Widdern, O.; Metten, M.; Biersack, H.-J.; Maier, W.; et al. The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Res. Neuroimaging 2009, 173, 107–112. [Google Scholar] [CrossRef]
- Amen, D.G.; Trujillo, M.; Newberg, A.; Willeumier, K.; Tarzwell, R.; Wu, J.C.; Chaitin, B. Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool. Open Neuroimaging J. 2011, 5, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, D.B.; Zembar, M.J.; Niederehe, G. Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychol. Bull. 1995, 117, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-I.; Liu, C.-Y.; Yang, C.-H. Untreated duration predicted the severity of depression at the two-year follow-up point. PLoS ONE 2017, 12, e0185119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 2004, 72, 341–372. [Google Scholar] [CrossRef]
- Burcusa, S.L.; Iacono, W.G. Risk for recurrence in depression. Clin. Psychol. Rev. 2007, 27, 959–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, M.T.; Elkin, I.; Imber, S.D.; Sotsky, S.M.; Watkins, J.T.; Collins, J.F.; Pilkonis, P.A.; Beckham, E.; Glass, D.R.; Dolan, R.T.; et al. Course of depressive symptoms over follow-up. Findings from the National Institute of Mental Health Treatment of Depression Collaborative Research Program. Arch Gen Psychiatry 1992, 49, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, E.; Attwells, S.; Wilson, A.A.; Mizrahi, R.; Rusjan, P.; Miler, L.; Xu, C.; Sharma, S.; Kish, S.; Houle, S.; et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: A cross-sectional study. Lancet Psychiatry 2018, 5, 339–347. [Google Scholar] [CrossRef]
- Lopez-Duran, N.L.; McGinnis, E.; Kuhlman, K.; Geiss, E.; Vargas, I.; Mayer, S. HPA-axis stress reactivity in youth depression: Evidence of impaired regulatory processes in depressed boys. Stress 2015, 18, 545–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbau, I.G.; Brücklmeier, B.; Uhr, M.; Arloth, J.; Czamara, D.; Spoormaker, V.I.; Czisch, M.; Stephan, K.E.; Binder, E.B.; Sämann, P.G. The brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers. Proc. Natl. Acad. Sci. USA 2018, 115, E10206–E10215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevets, W.C. Orbitofrontal Cortex Function and Structure in Depression. Ann. N. Y. Acad. Sci. 2007, 1121, 499–527. [Google Scholar] [CrossRef]
- Koob, G.; Volkow, N. Neurocircuitry of Addiction. Neuropsychopharmacology 2021. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Hidalgo, J.J.; Whittom, A.; Villarreal, A.; Soni, M.; Meshram, A.; Pickett, J.C.; Rajkowska, G.; Stockmeier, C.A. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J. Affect. Disord. 2014, 158, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Helm, K.; Viol, K.; Weiger, T.M.; Tass, P.A.; Grefkes, C.; del Monte, D.; Schiepek, G. Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 2715–2737. [Google Scholar] [CrossRef] [Green Version]
- Tsujii, N.; Otsuka, I.; Okazaki, S.; Yanagi, M.; Numata, S.; Yamaki, N.; Kawakubo, Y.; Shirakawa, O.; Hishimoto, A. Mitochondrial DNA Copy Number Raises the Potential of Left Frontopolar Hemodynamic Response as a Diagnostic Marker for Distinguishing Bipolar Disorder From Major Depressive Disorder. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef]
- Rao, V.R.; Sellers, K.K.; Wallace, D.L.; Lee, M.B.; Bijanzadeh, M.; Sani, O.G.; Yang, Y.; Shanechi, M.M.; Dawes, H.E.; Chang, E.F. Direct Electrical Stimulation of Lateral Orbitofrontal Cortex Acutely Improves Mood in Individuals with Symptoms of Depression. Curr. Biol. 2018, 28, 3893–3902.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.I.; Chun, M.-R.; Yang, J.-S.; Lim, S.-W.; Kim, M.-J.; Kim, S.-W.; Myung, W.-J.; Kim, D.-K.; Lee, S.-Y. Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS Neurosci. Ther. 2015, 21, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Verkerk, R.; Vandoolaeghe, E.; Lin, A.; Scharpé, S. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: Modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr. Scand. 1998, 97, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Shelton, R.C.; Duman, R.S. Functional Biomarkers of Depression: Diagnosis, Treatment, and Pathophysiology. Neuropsychopharmacology 2011, 36, 2375–2394. [Google Scholar] [CrossRef]
- Schön, M.; Mousa, A.; Berk, M.; Chia, W.L.; Ukropec, J.; Majid, A.; Ukropcová, B.; De Courten, B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019, 11, 1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasahara, I.; Fujimura, N.; Nozawa, Y.; Furuhata, Y.; Sato, H. The effect of histidine on mental fatigue and cognitive performance in subjects with high fatigue and sleep disruption scores. Physiol. Behav. 2015, 147, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ruitenbeek, P.; Sambeth, A.; Vermeeren, A.; Young, S.; Riedel, W. Effects of L-histidine depletion and L-tyrosine/L-phenylalanine depletion on sensory and motor processes in healthy volunteers. Br. J. Pharmacol. 2009, 157, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, T.; Nakamura, T.; Shibakusa, T.; Sugita, M.; Naganuma, F.; Iida, T.; Miura, Y.; Mohsen, A.; Harada, R.; Yanai, K. Insufficient Intake of L-Histidine Reduces Brain Histamine and Causes Anxiety-Like Behaviors in Male Mice. J. Nutr. 2014, 144, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Koga, N.; Hattori, K.; Matsuo, J.; Ota, M.; Hori, H.; Sasayama, D.; Teraishi, T.; Ishida, I.; Yoshida, F.; et al. Plasma amino acid profile in major depressive disorder: Analyses in two independent case-control sample sets. J. Psychiatr. Res. 2018, 96, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Viña, J.R. Structure of the Blood–Brain Barrier and Its Role in the Transport of Amino Acids. J. Nutr. 2006, 136, 218S–226S. [Google Scholar] [CrossRef]
- Yamakami, J.; Sakurai, E.; Sakurada, T.; Maeda, K.; Hikichi, N. Stereoselective blood-brain barrier transport of histidine in rats. Brain Res. 1998, 812, 105–112. [Google Scholar] [CrossRef]
- Forrest, M.; Hill, M.; Kavanagh, D.H.; Tansey, K.; Waite, A.J.; Blake, D.J. The Psychiatric Risk Gene Transcription Factor 4 (TCF4) Regulates Neurodevelopmental Pathways Associated With Schizophrenia, Autism, and Intellectual Disability. Schizophr. Bull. 2017, 44, 1100–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Yu, Z.; Giegling, I.; Xie, L.; Hartmann, A.M.; Prehn, C.; Adamski, J.; Kahn, R.; Li, Y.; Illig, T.; et al. Schizophrenia shows a unique metabolomics signature in plasma. Transl. Psychiatry 2012, 2, e149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossakowska-Wójcik, J.; Orzechowska, A.; Talarowska, M.; Szemraj, J.; Gałecki, P. The importance of TCF4 gene in the etiology of recurrent depressive disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Webhofer, C.; Gormanns, P.; Tolstikov, V.; Zieglgänsberger, W.; Sillaber, I.; Holsboer, F.; Turck, C.W. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation. Transl. Psychiatry 2011, 1, e58. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, M.M. Histamine in the regulation of wakefulness. Sleep Med. Rev. 2011, 15, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koval’Zon, V.M. The role of histaminergic system of the brain in the regulation of sleep-wakefulness cycle. Hum. Physiol. 2013, 39, 574–583. [Google Scholar] [CrossRef]
- Torrealba, F.; Riveros, M.E.; Contreras, M.; Valdes, J.L. Histamine and motivation. Front. Syst. Neurosci. 2012, 6, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashiro, M.; Mochizuki, H.; Iwabuchi, K.; Sakurada, Y.; Itoh, M.; Watanabe, T.; Yanai, K. Roles of histamine in regulation of arousal and cognition: Functional neuroimaging of histamine H1 receptors in human brain. Life Sci. 2002, 72, 409–414. [Google Scholar] [CrossRef]
- Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol. 2008, 154, 1166–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, H.; Inagaki, N.; Yamtodani, A.; Watanabe, T. Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci. 1991, 14, 415–418. [Google Scholar] [CrossRef]
- Ghi, P.; Ferretti, C.; Blengio, M. Effects of different types of stress on histamine-H3 receptors in the rat cortex. Brain Res. 1995, 690, 104–107. [Google Scholar] [CrossRef]
- Endou, M.; Yanai, K.; Sakurai, E.; Fukudo, S.; Hongo, M.; Watanabe, T. Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res. 2001, 891, 32–41. [Google Scholar] [CrossRef]
- Borges, R. Histamine H1 receptor activation mediates the preferential release of adrenaline in the rat adrenal gland. Life Sci. 1994, 54, 631–640. [Google Scholar] [CrossRef]
- Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 2011, 7, 9–13. [Google Scholar] [PubMed]
- Montoya, A.; Bruins, R.; Katzman, M.; Blier, P. The noradrenergic paradox: Implications in the management of depression and anxiety. Neuropsychiatr. Dis. Treat. 2016, 2016, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Yanai, K.; Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: An insight from human positron emission tomography studies. Pharmacol. Ther. 2007, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Fukudo, S.; Tashiro, A.; Utsumi, A.; Tamura, D.; Itoh, M.; Iwata, R.; Tashiro, M.; Mochizuki, H.; Funaki, Y.; et al. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur. J. Neurosci. 2004, 20, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Ito, C.; Shen, H.-W.; Toyota, H.; Kubota, Y.; Sakurai, E.; Watanabe, T.; Sato, M. Effects of the acute and chronic restraint stresses on the central histaminergic neuron system of Fischer rat. Neurosci. Lett. 1999, 262, 143–145. [Google Scholar] [CrossRef]
- Passani, M.B.; Lin, J.-S.; Hancock, A.; Crochet, S.; Blandina, P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol. Sci. 2004, 25, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the Nervous System. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nat. Cell Biol. 2008, 455, 894–902. [Google Scholar] [CrossRef]
- Uchida, S.; Hara, K.; Kobayashi, A.; Otsuki, K.; Yamagata, H.; Hobara, T.; Suzuki, T.; Miyata, N.; Watanabe, Y. Epigenetic Status of Gdnf in the Ventral Striatum Determines Susceptibility and Adaptation to Daily Stressful Events. Neuron 2011, 69, 359–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohoff, F.W. Overview of the Genetics of Major Depressive Disorder. Curr. Psychiatry Rep. 2010, 12, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage 2002, 17, 719–731. [Google Scholar] [CrossRef]
- Zama, T.; Takahashi, Y.; Shimada, S. Simultaneous EEG-NIRS Measurement of the Inferior Parietal Lobule During a Reaching Task With Delayed Visual Feedback. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Von Lühmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Müller, K.-R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 180003. [Google Scholar] [CrossRef] [PubMed]
- Vasic, N.; Wolf, N.D.; Grön, G.; Sosic-Vasic, Z.; Connemann, B.J.; Sambataro, F.; von Strombeck, A.; Lang, D.; Otte, S.; Dudek, M.; et al. Baseline brain perfusion and brain structure in patients with major depression: A multimodal magnetic resonance imaging study. J. Psychiatry Neurosci. 2015, 40, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Hardikar, S.; Albrechtsen, R.D.; Achaintre, D.; Lin, T.; Pauleck, S.; Playdon, M.; Holowatyj, A.N.; Gigic, B.; Schrotz-King, P.; Boehm, J.; et al. Impact of Pre-Blood Collection Factors on Plasma Metabolomic Profiles. Metabolites 2020, 10, 213. [Google Scholar] [CrossRef]
MDD (n = 25) | HC (n = 25) | p-Value | |
---|---|---|---|
Age (years) | 29.5 ± 8.7 | 30.3 ± 8.6 | 0.744 |
Gender | 1.000 | ||
Male | 7 (28.0%) | 7 (28.0%) | |
Female | 18 (72.0%) | 18 (72.0%) | |
Ethnicity | 1.000 | ||
Chinese | 18 (72.0%) | 18 (72.0%) | |
Malay | 3 (12.0%) | 3 (12.0%) | |
Indian | 4 (16.0%) | 4 (16.0%) | |
Handedness | 0.307 | ||
Right | 22 (84.0%) | 24 (96.0%) | |
Ambidextrous | 3 (12.0%) | 1 (4.0%) | |
Education (years) | 13.8 ± 2.0 | 14.2 ± 1.9 | 0.518 |
VFT task performance a | 19.4 ± 4.6 | 22.3 ± 5.2 | 0.034 |
HAM-D score | 21.5 ± 4.3 | 1.9 ± 1.8 | ≤0.001 |
Family psychiatric history | 11 (44.0%) | 6 (24.0%) | 0.136 |
Age at onset (years) | 20.9 ± 6.4 | - | |
Duration of illness (years) | 9.1 ± 8.3 | - | |
Duration of untreated illness (months) | 58.1 ± 65.7 | - | |
Past admission to psychiatric ward | 9 (36.0%) | - | |
Past suicide attempts | 9 (36.0%) | - | |
Episode | |||
Single | 2 (8.0%) | - | |
Recurrent | 23 (92.0%) | - | |
Depression severity | |||
Mild | 4 (16.0%) | - | |
Moderate | 13 (52.0%) | - | |
Severe | 8 (32.0%) | - | |
Pharmacotherapy | 17 (68.0%) | - | |
Fluoxetine equivalent dose (mg/day) | 44.3 ± 28.8 | - | |
Diazepam equivalent dose (mg/day) | 3.1 ± 1.4 | - | |
Chlorpromazine equivalent dose (mg/day) | 125.5 ± 133.3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, S.K.; Husain, S.F.; Wee, H.N.; Ching, J.; Kovalik, J.-P.; Cheng, M.S.; Schwarz, H.; Tang, T.B.; Ho, C.S. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics 2021, 11, 1978. https://doi.org/10.3390/diagnostics11111978
Ong SK, Husain SF, Wee HN, Ching J, Kovalik J-P, Cheng MS, Schwarz H, Tang TB, Ho CS. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics. 2021; 11(11):1978. https://doi.org/10.3390/diagnostics11111978
Chicago/Turabian StyleOng, Samantha K., Syeda F. Husain, Hai Ning Wee, Jianhong Ching, Jean-Paul Kovalik, Man Si Cheng, Herbert Schwarz, Tong Boon Tang, and Cyrus S. Ho. 2021. "Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder" Diagnostics 11, no. 11: 1978. https://doi.org/10.3390/diagnostics11111978
APA StyleOng, S. K., Husain, S. F., Wee, H. N., Ching, J., Kovalik, J.-P., Cheng, M. S., Schwarz, H., Tang, T. B., & Ho, C. S. (2021). Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics, 11(11), 1978. https://doi.org/10.3390/diagnostics11111978