Choriocapillaris Vascular Density Changes: Healthy vs. Advanced Exudative Age-Related Macular Degeneration Previously Treated with Multiple Anti-VEGF Intravitreal Injections
Abstract
:1. Introduction
2. Methods
2.1. Imaging Protocol and Acquired Data
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogl, W.-D.; Bogunović, H.; Waldstein, S.M.; Riedl, S.; Schmidt-Erfurth, U. Spatio-Temporal Alterations in Retinal and Choroidal Layers in the Progression of Age-Related Macular Degeneration (AMD) in Optical Coherence Tomography. Sci. Rep. 2021, 11, 5743. [Google Scholar] [CrossRef]
- De Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J. Retina Vitreous 2015, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- de Carlo, T.E.; Bonini Filho, M.A.; Chin, A.T.; Adhi, M.; Ferrara, D.; Baumal, C.R.; Witkin, A.J.; Reichel, E.; Duker, J.S.; Waheed, N.K. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 2015, 122, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Rocholz, R.; Corvi, F.; Weichsel, J.; Schmidt, S.; Staurenghi, G. OCT Angiography (OCTA) in Retinal Diagnostics. 14 August 2019. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; Chapter 6. [Google Scholar]
- Tey, K.Y.; Teo, K.; Tan, A.C.S.; Devarajan, K.; Tan, B.; Tan, J.; Schmetterer, L.; Ang, M. Optical coherence tomography angiography in diabetic retinopathy: A review of current applications. Eye Vis. 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Manian, K.V.; Galloway, C.A.; Dalvi, S.; Emanuel, A.A.; Mereness, J.A.; Black, W.; Winschel, L.; Soto, C.; Li, Y.; Song, Y.; et al. 3D IPSC Modeling of the Retinal Pigment Epithelium-Choriocapillaris Complex Identifies Factors Involved in the Pathology of Macular Degeneration. Cell Stem Cell 2021, 28, 846–862. [Google Scholar] [CrossRef]
- Jia, Y.; Bailey, S.T.; Wilson, D.J.; Tan, O.; Klein, M.L.; Flaxel, C.J.; Potsaid, B.; Liu, J.J.; Lu, C.D.; Kraus, M.F.; et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 2014, 121, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, A.; Benatti, E.; Cozzi, M.; Erba, S.; Vaishnavi, S.; Vupparaboina, K.K.; Staurenghi, G.; Chhablani, J.; Gillies, M.; Viola, F. Choroidal Structural Changes Correlate With Neovascular Activity in Neovascular Age Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3836–3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirco, K.R.; Sohn, E.H.; Stone, E.M.; Tucker, B.A.; Mullins, R.F. Structural and Molecular Changes in the Aging Choroid: Implications for Age-Related Macular Degeneration. Eye 2017, 31, 10–25. [Google Scholar] [CrossRef]
- Boltz, A.; Luksch, A.; Wimpissinger, B.; Maar, N.; Weigert, G.; Frantal, S.; Brannath, W.; Garhofer, G.; Ergun, E.; Stur, M.; et al. Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4220–4225. [Google Scholar] [CrossRef]
- Feigl, B. Age-Related Maculopathy—Linking Aetiology and Pathophysiological Changes to the Ischaemia Hypothesis. Prog. Retin. Eye Res. 2009, 24, 63–86. [Google Scholar] [CrossRef]
- Spaide, R.F. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. Am. J. Ophthalmol. 2016, 170, 10. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-Spectrum Amplitude-Decorrelation Angiography with Optical Coherence Tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Antonio, L.; Viggiano, P.; Ferro, G.; Toto, L.; D’Aloisio, R.; Porreca, A.; Di Nicola, M.; Mastropasqua, R. Retinal Vascular Metrics Difference by Comparison of Two Image Acquisition Modes Using a Novel OCT Angiography Prototype. PLoS ONE 2020, 15, e0243074. [Google Scholar] [CrossRef] [PubMed]
- Moult, E.M.; Waheed, N.K.; Novais, E.A.; Choi, W.; Lee, B.; Ploner, S.B.; Cole, E.D.; Louzada, R.N.; Lu, C.D.; Rosenfeld, P.J.; et al. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 2016, 36 (Suppl. S1), S2–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, M.; Sabrosa, A.S.; Duker, J.S.; Waheed, N.K. Choriocapillaris Changes in Dry Age-Related Macular Degeneration and Geographic Atrophy: A Review. Eye Vis. 2018, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.; Moult, E.M.; Waheed, N.K.; Adhi, M.; Lee, B.; Lu, C.D.; de Carlo, T.E.; Jayaraman, V.; Rosenfeld, P.J.; Duker, J.S.; et al. Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology 2015, 122, 2532–2544. [Google Scholar] [CrossRef]
- Kvanta, A.; Casselholm de Salles, M.; Amrén, U.; Bartuma, H. Optical coherence tomography angiography of the foveal microvasculature in geographic atrophy. Retina 2017, 37, 936–942. [Google Scholar] [CrossRef]
- Sacconi, R.; Corbelli, E.; Carnevali, A.; Querques, L.; Bandello, F.; Querques, G. Optical coherence tomography angiography in geographic atrophy. Retina 2018, 38, 2350–2355. [Google Scholar] [CrossRef]
- Nassisi, M.; Shi, Y.; Fan, W.; Borrelli, E.; Uji, A.; Ip, M.S.; Sadda, S.R. Choriocapillaris Impairment around the Atrophic Lesions in Patients with Geographic Atrophy: A Swept-Source Optical Coherence Tomography Angiography Study. Br. J. Ophthalmol. 2019, 103, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Nassisi, M.; Baghdasaryan, E.; Borrelli, E.; Ip, M.; Sadda, S.R. Choriocapillaris Flow Impairment Surrounding Geographic Atrophy Correlates with Disease Progression. PLoS ONE 2019, 14, e0212563. [Google Scholar] [CrossRef]
- Lindner, M.; Böker, A.; Mauschitz, M.M.; Göbel, A.P.; Fimmers, R.; Brinkmann, C.K.; Schmitz-Valckenberg, S.; Schmid, M.; Holz, F.G.; Fleckenstein, M.; et al. Directional Kinetics of Geographic Atrophy Progression in Age-Related Macular Degeneration with Foveal Sparing. Ophthalmology 2015, 122, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.; Lutty, G. Understanding Age-Related Macular Degeneration (AMD): Relationships between the Photoreceptor/Retinal Pigment Epithelium/Bruch’s Membrane/Choriocapillaris Complex. Mol. Aspects Med. 2012, 33, 295–317. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, E.; Uji, A.; Sarraf, D.; Sadda, S.R. Alterations in the Choriocapillaris in Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4792–4798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, E.; Shi, Y.; Uji, A.; Balasubramanian, S.; Nassisi, M.; Sarraf, D.; Sadda, S.R. Topographic Analysis of the Choriocapillaris in Intermediate Age-Related Macular Degeneration. Am. J. Ophthalmol. 2018, 196, 34–43. [Google Scholar] [CrossRef]
- Alagorie, A.R.; Verma, A.; Nassisi, M.; Nittala, M.; Velaga, S.; Tiosano, L.; Sadda, S.R. Quantitative assessment of choriocapillaris flow deficits surrounding choroidal neovascular membranes. Retina 2020, 40, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhao, X.; Zhao, N.; Yuan, M.; Yang, J.; Dai, R.; Chen, Y. Comparison of choriocapillary flow density between fellow eyes of polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. BMC Ophthalmol. 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Christenbury, J.G.; Phasukkijwatana, N.; Gilani, F.; Freund, K.B.; Sadda, S.; Sarraf, D. Progression of macular atrophy in eyes with type 1 neovascularization and age-related macular degeneration receiving long-term intravitreal anti-vascular endothelial growth factor therapy: An Optical Coherence Tomographic Angiography Analysis. Retina 2018, 38, 1276–1288. [Google Scholar] [CrossRef]
- Vujosevic, S.; Toma, C.; Villani, E.; Muraca, A.; Torti, E.; Florimbi, G.; Pezzotti, M.; Nucci, P.; De Cillà, S. Quantitative Choriocapillaris Evaluation in Intermediate Age-related Macular Degeneration by Swept-source Optical Coherence Tomography Angiography. Acta Ophthalmol. 2019, 97, e919–e926. [Google Scholar] [CrossRef]
- Borrelli, E.; Mastropasqua, R.; Senatore, A.; Palmieri, M.; Toto, L.; Sadda, S.R.; Mastropasqua, L. Impact of Choriocapillaris Flow on Multifocal Electroretinography in Intermediate Age-Related Macular Degeneration Eyes. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD25. [Google Scholar] [CrossRef] [Green Version]
- Corvi, F.; Tiosano, L.; Corradetti, G.; Nittala, M.G.; Lindenberg, S.; Alagorie, A.R.; McLaughlin, J.A.; Lee, T.K.; Sadda, S.R. Choriocapillaris flow deficits as a risk factor for progression of age-related macular degeneration. Retina 2021, 41, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, M.V.; Rabiolo, A.; Marchese, A.; de Vitis, L.; Carnevali, A.; Querques, L.; Bandello, F.; Querques, G. Choroid Morphometric Analysis in Non-Neovascular Age-Related Macular Degeneration by Means of Optical Coherence Tomography Angiography. Br. J. Ophthalmol. 2017, 101, 1193–1200. [Google Scholar] [CrossRef]
- Nesper, P.L.; Soetikno, B.T.; Fawzi, A.A. Choriocapillaris Nonperfusion Is Associated With Poor Visual Acuity in Eyes With Reticular Pseudodrusen. Am. J. Ophthalmol. 2017, 174, 42–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatziralli, I.; Theodossiadis, G.; Panagiotidis, D.; Pousoulidi, P.; Theodossiadis, P. Choriocapillaris’ Alterations in the Presence of Reticular Pseudodrusen Compared to Drusen: Study Based on OCTA Findings. Int. Ophthalmol. 2018, 38, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Sarraf, D.; Freund, K.B.; Sadda, S.R. OCT Angiography and Evaluation of the Choroid and Choroidal Vascular Disorders. Prog. Retin Eye Res. 2018, 67, 30–55. [Google Scholar] [CrossRef]
- Borrelli, E.; Souied, E.H.; Freund, K.B.; Querques, G.; Miere, A.; Gal-Or, O.; Sacconi, R.; Sadda, S.R.; Sarraf, D. Reduced choriocapillaris flow in eyes with type 3 neovascularization and age-related macular degeneration. Retina 2018, 38, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Koizumi, H.; Yamagishi, T.; Kinoshita, S. Subfoveal Choroidal Thickness after Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration: 12-Month Results. Ophthalmology 2012, 119, 1621–1627. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Yanagi, Y.; Agrawal, R.; Teo, H.Y.; Seen, S.; Yeo, I.Y.S.; Mathur, R.; Chan, C.M.; Lee, S.Y.; Wong, E.Y.M.; et al. Choroidal Remodeling in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A 12-Month Prospective Study. Sci. Rep. 2017, 7, 7868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipecz, A.; Miller, L.; Kovacs, I.; Czakó, C.; Csipo, T.; Baffi, J.; Csiszar, A.; Tarantini, S.; Ungvari, Z.; Yabluchanskiy, A.; et al. Microvascular Contributions to Age-Related Macular Degeneration (AMD): From Mechanisms of Choriocapillaris Aging to Novel Interventions. GeroScience 2019, 41, 813–845. [Google Scholar] [CrossRef] [PubMed]
- Govetto, A.; Sarraf, D.; Figueroa, M.S.; Pierro, L.; Ippolito, M.; Risser, G.; Bandello, F.; Hubschman, J.P. Choroidal Thickness in Non-Neovascular versus Neovascular Age-Related Macular Degeneration: A Fellow Eye Comparative Study. Br. J. Ophthalmol. 2017, 101, 764–769. [Google Scholar] [CrossRef]
- Minnella, A.M.; Federici, M.; Falsini, B.; Barbano, L.; Gambini, G.; Lanza, A.; Caporossi, A.; Savastano, M.C. Choroidal Thickness Changes After Intravitreal Ranibizumab for Exudative Age-Related Macular Degeneration. BioDrugs 2016, 30, 353–359. [Google Scholar] [CrossRef]
- Hikichi, T.; Agarie, M. Reduced Vessel Density of the Choriocapillaris during Anti-Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Rispoli, M.; Savastano, M.C.; Lumbroso, B. Quantitative Vascular Density Changes in Choriocapillaris Around CNV After Anti-VEGF Treatment: Dark Halo. Ophthalm. Surg. Lasers Imaging Retin. 2018, 49, 918–924. [Google Scholar] [CrossRef]
- Gharbiya, M.; Pantaleoni, F.B.; Grandinetti, F.; Gabrieli, C.B. Indocyanine Green Angiographic Findings in Idiopathic Choroidal Neovascularisation. Eye 1999, 13 Pt 5, 621–628. [Google Scholar] [CrossRef]
- McLeod, D.S.; Taomoto, M.; Otsuji, T.; Green, W.R.; Sunness, J.S.; Lutty, G.A. Quantifying Changes in RPE and Choroidal Vasculature in Eyes with Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1986–1993. [Google Scholar]
- Treister, A.D.; Nesper, P.L.; Fayed, A.E.; Gill, M.K.; Mirza, R.G.; Fawzi, A.A. Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT Angiography. Transl. Vis. Sci. Technol. 2018, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moult, E.M.; Alibhai, A.Y.; Rebhun, C.; Lee, B.; Ploner, S.; Schottenhamml, J.; Husvogt, L.; Baumal, C.R.; Witkin, A.J.; Maier, A.; et al. Spatial distribution of choriocapillaris impairment in eyes with choroidal neovascularization secondary to age-related macular degeneration: A Quantitative OCT Angiography Study. Retina 2020, 40, 428–445. [Google Scholar] [CrossRef] [PubMed]
- Scharf, J.; Corradetti, G.; Corvi, F.; Sadda, S.; Sarraf, D. Optical Coherence Tomography Angiography of the Choriocapillaris in Age-Related Macular Degeneration. JCM 2021, 10, 751. [Google Scholar] [CrossRef] [PubMed]
Mean Data (±SD) | Healthy | ae-AMD |
---|---|---|
Age | 60.9 (± 8.3) | 73.33 (±15.05) |
Gender | F/M = 14/7 | F/M = 12/9 |
BCVA (ETDRS letters) | 98.47 (±1.50) | 7.04 (±5.96) |
Spherical equivalent | −0.09 (±1.02) | −0.1 (±1) |
MNV flow area (mm2) | 0 | 3.08 (±3.13) |
CC flow density (whole) | 68.48 (±1.4) | 60.59 (±7.8) |
CC flow density (fovea) | 66.6 (±2.2) | 49.05 (±12.2) |
Whole | Fovea | |||
---|---|---|---|---|
Healthy | ae-AMD | Healthy | ae-AMD | |
Number of values | 21 | 21 | 21 | 21 |
Minimum | 66.2 | 39.8 | 63.5 | 9.4 |
Maximum | 71.6 | 70.5 | 70.3 | 60.3 |
Mean | 68.48 | 60.6 | 66.6 | 49.05 |
Std. Error of Mean | 0.3030 | 1.667 | 0.3666 | 2.609 |
Lower 95% CI | 67.85 | 57.12 | 65.83 | 43.61 |
Upper 95% CI | 69.11 | 64.07 | 67.36 | 54.49 |
Mann–Whitney test | p < 0.0001 (t = 4.91; df =4 0) | p < 0.0001 | ||
(t = 6.84; df = 40) |
Multivariate Tests b | |||||||
---|---|---|---|---|---|---|---|
Effect | Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
Intercept | Pillai’s Trace | 0.838 | 98,515 a | 2000 | 38,000 | 0.000 | 0.838 |
Wilks’ Lambda | 0.162 | 98,515 a | 2000 | 38,000 | 0.000 | 0.838 | |
Hotelling’s Trace | 5185 | 98,515 a | 2000 | 38,000 | 0.000 | 0.838 | |
Roy’s Largest Root | 5185 | 98,515 a | 2000 | 38,000 | 0.000 | 0.838 | |
AGE (covariate) | Pillai’s Trace | 0.040 | 0.784 a | 2000 | 38,000 | 0.464 | 0.040 |
Wilks’ Lambda | 0.960 | 0.784 a | 2000 | 38,000 | 0.464 | 0.040 | |
Hotelling’s Trace | 0.041 | 0.784 a | 2000 | 38,000 | 0.464 | 0.040 | |
Roy’s Largest Root | 0.041 | 0.784 a | 2000 | 38,000 | 0.464 | 0.040 | |
Group | Pillai’s Trace | 0.438 | 14,836 a | 2000 | 38,000 | 0.000 | 0.438 |
Wilks’ Lambda | 0.562 | 14,836 a | 2000 | 38,000 | 0.000 | 0.438 | |
Hotelling’s Trace | 0.781 | 14,836 a | 2000 | 38,000 | 0.000 | 0.438 | |
Roy’s Largest Root | 0.781 | 14,836 a | 2000 | 38,000 | 0.000 | 0.438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savastano, M.C.; Rizzo, C.; Gambini, G.; Savastano, A.; Falsini, B.; Bacherini, D.; Caputo, C.G.; Kilian, R.; Faraldi, F.; De Vico, U.; et al. Choriocapillaris Vascular Density Changes: Healthy vs. Advanced Exudative Age-Related Macular Degeneration Previously Treated with Multiple Anti-VEGF Intravitreal Injections. Diagnostics 2021, 11, 1958. https://doi.org/10.3390/diagnostics11111958
Savastano MC, Rizzo C, Gambini G, Savastano A, Falsini B, Bacherini D, Caputo CG, Kilian R, Faraldi F, De Vico U, et al. Choriocapillaris Vascular Density Changes: Healthy vs. Advanced Exudative Age-Related Macular Degeneration Previously Treated with Multiple Anti-VEGF Intravitreal Injections. Diagnostics. 2021; 11(11):1958. https://doi.org/10.3390/diagnostics11111958
Chicago/Turabian StyleSavastano, Maria Cristina, Clara Rizzo, Gloria Gambini, Alfonso Savastano, Benedetto Falsini, Daniela Bacherini, Carmela Grazia Caputo, Raphael Kilian, Francesco Faraldi, Umberto De Vico, and et al. 2021. "Choriocapillaris Vascular Density Changes: Healthy vs. Advanced Exudative Age-Related Macular Degeneration Previously Treated with Multiple Anti-VEGF Intravitreal Injections" Diagnostics 11, no. 11: 1958. https://doi.org/10.3390/diagnostics11111958
APA StyleSavastano, M. C., Rizzo, C., Gambini, G., Savastano, A., Falsini, B., Bacherini, D., Caputo, C. G., Kilian, R., Faraldi, F., De Vico, U., & Rizzo, S. (2021). Choriocapillaris Vascular Density Changes: Healthy vs. Advanced Exudative Age-Related Macular Degeneration Previously Treated with Multiple Anti-VEGF Intravitreal Injections. Diagnostics, 11(11), 1958. https://doi.org/10.3390/diagnostics11111958