Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Rotarod
2.3. Barnes Maze
2.4. Longitudinal PET Imaging with 18F-THK5351 Tau Tracer
2.5. Histology for Tau Pathology
2.6. Histological Image Analysis and Quantification
2.7. ELISA Quantification
2.8. Statistical Analysis
3. Results
3.1. Longitudinal PET Imaging Showed Augmented Pathological Tau in P301S Mice
3.2. P301S Mice Exhibited Longitudinal Motor, Learning, and Memory Impairments
3.3. Increased 18F-THK5351 PET Signal Coincided with Abundant Tau Brain Pathology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 14, 367–429. [Google Scholar]
- Long, J.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Hardy, J.; Higgins, G.; Mayford, M.; Barzilai, A.; Keller, F.; Schacher, S.; Kandel, E. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Lee, V.M.Y.; Goedert, M.; Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 2001, 24, 1121–1159. [Google Scholar] [CrossRef] [PubMed]
- Götz, J.; Halliday, G.; Nisbet, R.M. Molecular Pathogenesis of the Tauopathies. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 239–261. [Google Scholar] [CrossRef] [PubMed]
- Arendt, T.; Stieler, J.; Holzer, M. Tau and tauopathies. Brain Res. Bull. 2016, 126, 238–292. [Google Scholar] [CrossRef]
- Wang, J.Z.; Grundke-Iqbal, I.; Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007, 25, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, C.; Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 2018, 21, 1332–1340. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, I.; Soto, C. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Semin. Cell Dev. Biol. 2011, 22, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, I.A.; Vos, S.J.; Burns, L.; Knol, D.L.; Scheltens, P.; Soininen, H.; Wahlund, L.-O.; Hampel, H.; Tsolaki, M.; Minthon, L.; et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 2012, 79, 1809–1816. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Müller-Spahn, F.; Berger, C.; Haberl, A.; Ackenheil, M.; Hock, C. Evidence of Blood-Cerebrospinal Fluid-Barrier Impairment in a Subgroup of Patients with Dementia of the Alzheimer Type and Major Depression: A Possible Indicator for Immunoactivation. Dement. Geriatr. Cogn. Disord. 1995, 6, 348–354. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr. Opin. Neurol. 2012, 25, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.-G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol. Psychiatry 2019, 24, 1112–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiki, A.; Okamura, N.; Furukawa, K.; Furumoto, S.; Harada, R.; Tomita, N.; Hiraoka, K.; Watanuki, S.; Ishikawa, Y.; Tago, T.; et al. Longitudinal Assessment of Tau Pathology in Patients with Alzheimer’s Disease Using [18F]THK-5117 Positron Emission Tomography. PLoS ONE 2015, 10, e0140311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.P.; Pascoal, T.A.; Mathotaarachchi, S.; Therriault, J.; Kang, M.S.; Shin, M.; Guiot, M.-C.; Guo, Q.; Harada, R.; Comley, R.A.; et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimer’s Res. Ther. 2017, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Harada, R.; Ishiki, A.; Kai, H.; Sato, N.; Furukawa, K.; Furumoto, S.; Tago, T.; Tomita, N.; Watanuki, S.; Hiraoka, K.; et al. Correlations of 18F-THK5351 PET with Postmortem Burden of Tau and Astrogliosis in Alzheimer Disease. J. Nucl. Med. 2017, 59, 671–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiyama, Y.; Higuchi, M.; Zhang, B.; Huang, S.-M.; Iwata, N.; Saido, T.C.; Maeda, J.; Suhara, T.; Trojanowski, J.Q.; Lee, V.M.-Y. Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron 2007, 53, 337–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, G., III; Gamez, N.; Armijo, E.; Kramm, C.; Morales, R.; Taylor-Presse, K.; Schulz, P.E.; Soto, C.; Moreno-Gonzalez, I. Peripheral Delivery of Neural Precursor Cells Ameliorates Parkinson’s Disease-Associated Pathology. Cells 2019, 8, 1359. [Google Scholar] [CrossRef] [Green Version]
- Colotla, V.A.; Flores, E.; Oscos, A.; Meneses, A.; Tapia, R. Effects of MPTP on locomotor activity in mice. Neurotoxicol. Teratol. 1990, 12, 405–407. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, I.; Edwards, G., III; Salvadores, N.; Shahnawaz, M.; Diaz-Espinoza, R.; Soto, C. Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol. Psychiatry 2017, 22, 1327–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, G., III; Zhao, J.; Dash, P.K.; Soto, C.; Moreno-Gonzalez, I. Traumatic Brain Injury Induces Tau Aggregation and Spreading. J. Neurotrauma 2019, 37, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchihara, T. Silver diagnosis in neuropathology: Principles, practice and revised interpretation. Acta Neuropathol. 2007, 113, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Jankowsky, J.L.; Zheng, H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2017, 12, 1–22. [Google Scholar] [CrossRef]
- Hall, B.; Mak, E.; Cervenka, S.; Aigbirhio, F.I.; Rowe, J.B.; O’Brien, J.T. In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res. Rev. 2017, 36, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Ingram, E.; Takao, M.; Smith, M.J.; Jakes, R.; Virdee, K.; Yoshida, H.; Holzer, M.; Craxton, M.; Emson, P.C.; et al. Abundant tau filaments and nonapoptotic neuro-degeneration in mice transgenic for human P301S tau. J. Neurosci. 2002, 22, 9340. [Google Scholar] [CrossRef] [Green Version]
- Woerman, A.L.; Patel, S.; Kazmi, S.A.; Oehler, A.; Freyman, Y.; Espiritu, L.; Cotter, R.; Castaneda, J.A.; Olson, S.H.; Prusiner, S.B. Kinetics of Human Mutant Tau Prion Formation in the Brains of 2 Transgenic Mouse Lines. JAMA Neurol. 2017, 74, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Chabrier, M.A.; Cheng, D.; Castello, N.A.; Green, K.N.; LaFerla, F.M. Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer’s disease. Neurobiol. Dis. 2014, 64, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Andorfer, C.; Kress, Y.; Espinoza, M.; De Silva, R.; Tucker, K.L.; Barde, Y.; Duff, K.; Davies, P. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. 2003, 86, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Lancelot, S.; Zimmer, L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol. Sci. 2010, 31, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C.; Diamond, M.I.; Duff, K.E.; Hyman, B.T. Mechanisms of Protein Seeding in Neurodegenerative Diseases. JAMA Neurol. 2013, 70, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.; Diamond, M.I. The expanding realm of prion phenomena in neurodegenerative disease. Prion 2009, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Holmes, B.B.; Furman, J.L.; Mahan, T.E.; Yamasaki, T.R.; Mirbaha, H.; Eades, W.C.; Belaygorod, L.; Cairns, N.J.; Holtzman, D.M.; Diamond, M.I. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, E4376–E4385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, R.; Hayashi, H.; Kawakatsu, S.; Ishiki, A.; Okamura, N.; Arai, H.; Otani, K. [18F]THK5351 PET imaging in early-stage semantic variant primary progressive aphasia: A report of two cases and a literature review. BMC Neurol. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.J.; Lee, H.; Lee, S.-Y.; Seo, S.; Park, K.H.; Lee, Y.-B.; Shin, D.J.; Kang, J.M.; Kil Yeon, B.; Kang, S.-G.; et al. [18F]THK5351 PET Imaging in Patients with Mild Cognitive Impairment. J. Clin. Neurol. 2020, 16, 202–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dujardin, S.; Bégard, S.; Caillierez, R.; Lachaud, C.; Carrier, S.; Lieger, S.; Gonzalez, J.A.; Deramecourt, V.; Déglon, N.; Maurage, C.-A.; et al. Different tau species lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathol. Commun. 2018, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Tago, T.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; et al. 18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. J. Nucl. Med. 2016, 57, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Lerdsirisuk, P.; Harada, R.; Hayakawa, Y.; Shimizu, Y.; Ishikawa, Y.; Iwata, R.; Kudo, Y.; Okamura, N.; Furumoto, S. Synthesis and evaluation of 2-pyrrolopyridinylquinoline derivatives as selective tau PET tracers for the diagnosis of Alzheimer’s disease. Nucl. Med. Biol. 2021, 93, 11–18. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.J.; Park, J.E.; Yun, J.; Shim, W.H.; Oh, J.S.; Oh, M.; Roh, J.H.; Seo, S.W.; Oh, S.J.; et al. Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Chanisa, C.; Monchaya, N.; Anchisa, K.; Chetsadaporn, P.; Attapon, J. Analysis of amyloid and tau deposition in Alzheimer’s disease using11C-Pittsburgh compound B and18F-THK 5351 positron emission tomography imaging. World J. Nucl. Med. 2021, 20, 61–72. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, E.-C.; Seo, S.; Ko, K.-P.; Kang, J.M.; Kim, W.-R.; Seo, H.-E.; Lee, S.-Y.; Lee, Y.-B.; Park, K.H.; et al. Identification of Heterogeneous Subtypes of Mild Cognitive Impairment Using Cluster Analyses Based on PET Imaging of Tau and Astrogliosis. Front. Aging Neurosci. 2021, 12, 615467. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Gonzalez, I.; Edwards, G.A., III; Hasan, O.; Gamez, N.; Schulz, J.E.; Fernandez-Valenzuela, J.J.; Gutierrez, A.; Soto, C.; Schulz, P.E. Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study. Diagnostics 2021, 11, 1874. https://doi.org/10.3390/diagnostics11101874
Moreno-Gonzalez I, Edwards GA III, Hasan O, Gamez N, Schulz JE, Fernandez-Valenzuela JJ, Gutierrez A, Soto C, Schulz PE. Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study. Diagnostics. 2021; 11(10):1874. https://doi.org/10.3390/diagnostics11101874
Chicago/Turabian StyleMoreno-Gonzalez, Ines, George A. Edwards, III, Omar Hasan, Nazaret Gamez, Jonathan E. Schulz, Juan Jose Fernandez-Valenzuela, Antonia Gutierrez, Claudio Soto, and Paul E. Schulz. 2021. "Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study" Diagnostics 11, no. 10: 1874. https://doi.org/10.3390/diagnostics11101874
APA StyleMoreno-Gonzalez, I., Edwards, G. A., III, Hasan, O., Gamez, N., Schulz, J. E., Fernandez-Valenzuela, J. J., Gutierrez, A., Soto, C., & Schulz, P. E. (2021). Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study. Diagnostics, 11(10), 1874. https://doi.org/10.3390/diagnostics11101874