The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence
Abstract
:1. Introduction
2. What Gas Vesicles Are
3. How Common Are Gas Vesicles Among the Species of Halobacteriaceae?
Genus | Species | Source of isolation | Flagellar motility | Bacteriorhodopsin / halorhodopsin | References |
---|---|---|---|---|---|
Halobacterium | Hbt. salinarum | Salted fish | + | + | [1] |
Haloferax | Hfx. mediterranei (basonym: Halobacterium mediterranei ) | Saltern, Spain | weak | - a | [20] |
Halogeometricum | Hgm. borinquense | Saltern, Puerto Rico | - | - a | [21] |
Haloplanus | Hpl. natans | Experimental outdoor pond, Dead Sea, Israel | - | NR | [22] |
Hpl. vescus | Saltern, China | + | NR | [23] | |
Hpl. aerogenes | Saltern, China | + | NR | [24] | |
Haloquadratum | Hqr. walsbyi | Salterns, Australia and Spain | - | + | [25] |
Halorubrum | Hrr. vacuolatum (basonym: Natronobacterium vacuolatum corrig.) | Lake Magadi, Kenya | - | NR | [26] |
4. The Possible Advantages of Gas Vesicles to Halophilic Archaea: Laboratory Studies
4.1. Competition for Limiting Oxygen
4.2. Can Gas Vesicles Function as Intracellular Oxygen Reservoirs?
4.3. Is Gas Vesicle Biosynthesis Induced by Anaerobiosis?
4.4. Induction of Gas Vesicle Formation at High Salinity
4.5. Induction of Gas Vesicle Formation at Low Temperature
4.6. Are Gas Vesicles Formed to Increase Light Availability?
4.7. Are Gas Vesicles Formed as a Means of Protection Against Excess Light?
5. The Possible Advantages of Gas Vesicles to Halophilic Archaea: Field Studies
5.1. How Successful Are Gas-Vacuolate Species of Halobacteriaceae in Colonizing Hypersaline Environments?
5.2. Are Natural Communities of Halophilic Archaea Ever Oxygen-Limited?
5.3. Studies on Haloquadratum in Coastal Brine Pools, Sinai Peninsula
5.4. Studies on Haloquadratum in Saxkoye Lake, Ukraine
5.5. Studies on Haloquadratum in the Crystallizer Ponds of the Eilat Salterns
6. Cell Size and Colony Size as Critical Parameters Affecting Buoyancy of Gas-Vacuolate Prokaryotes
7. Do the Gas Vesicles of Haloquadratum Serve to Optimize Light Absorption?
8. Do Gas Vesicles Serve to Increase the Cell Surface/Cytoplasmic Volume Ratio?
9. The Function of Gas Vesicles in the Life of Endospore-Forming Anaerobic Bacteria in the Sediments of Hypersaline Lakes
10. Epilogue
Acknowledgments
References
- Oren, A. Family Halobacteriaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology and Biochemistry, 4th; Rosenberg, E., DeLong, E.F., Thompson, F., Lory, S., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2013; in press. [Google Scholar]
- Petter, H.F.M. On bacteria of salted fish. Proc. Kon. Akad. Wetensch. Ser. B 1931, 34, 1417–1423. [Google Scholar]
- Petter, H.F.M. Over Roode en Andere Bacteriën van Gezouten Visch (in Dutch). Ph.D. thesis, University of Utrecht, Utrecht, The Netherlands, 1932. [Google Scholar]
- Sherwood, J.E.; Stagnitti, F.; Kokkinn, M.J.; Williams, W.D. A standard table for predicting equilibrium dissolved oxygen concentrations in salt lakes dominated by sodium chloride. Int. J. Salt Lake Res. 1992, 1, 1–6. [Google Scholar]
- Hof, T. Investigations concerning bacterial life in strong brines. Rec. Trav. Bot. Neerl. 1935, 32, 92–173. [Google Scholar]
- Houwink, A.L. Flagella, gas vacuoles and cell-wall structure in Halobacterium. halobium: An electron microscope study. J. Gen. Microbiol. 1956, 15, 146–150. [Google Scholar] [CrossRef]
- Larsen, H.; Omang, S.; Steensland, H. On the gas vacuoles of the halobacteria. Arch. Mikrobiol. 1967, 59, 197–203. [Google Scholar] [CrossRef]
- Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nature Rev. Microbiol. 2012, 10, 705–715. [Google Scholar] [CrossRef]
- Walsby, A.E. Gas vesicles. Microbiol. Rev. 1994, 58, 94–144. [Google Scholar]
- Walsby, A.E. The pressure relationships of gas vacuoles. Proc. R. Soc. London B 1971, 178, 301–326. [Google Scholar] [CrossRef]
- DasSarma, S.; Damerval, T.; Jones, J.G.; Tandeau de Marsac, N. A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol. Microbiol. 1987, 1, 365–370. [Google Scholar] [CrossRef]
- Pfeifer, F.; Weidinger, G.; Goebel, W. Genetic variability in Halobacterium halobium. J. Bacteriol. 1981, 145, 371–381. [Google Scholar]
- Horne, M.; Englert, C.; Wimmer, C.; Pfeifer, F. A DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol. Microbiol. 1991, 5, 1159–1174. [Google Scholar] [CrossRef]
- Englert, C.; Krüger, K.; Offner, S.; Pfeifer, F. Three different but related gene clusters encoding gas vesicles in halophilic archaea. J. Mol. Biol. 1992, 227, 586–592. [Google Scholar]
- Offner, S.; Hofacker, A.; Wanner, G.; Pfeifer, F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J. Bacteriol. 2000, 182, 4328–4336. [Google Scholar] [CrossRef]
- Englert, C.; Wanner, G.; Pfeifer, F. Functional analysis of the gas vesicle gene cluster of the halophilic Archaea Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product. Mol. Microbiol. 1992, 6, 3543–3550. [Google Scholar] [CrossRef]
- Offner, S.; Ziese, U.; Wanner, G.; Typke, D.; Pfeifer, F. Structural characteristics of halobacterial gas vesicles. Microbiology UK 1998, 144, 1331–1342. [Google Scholar] [CrossRef]
- Pfeifer, F.; Krüger, K.; Röder, R.; Mayr, A.; Ziesche, S.; Offner, S. Gas vesicle formation in halophilic Archaea. Arch. Microbiol. 1997, 167, 259–268. [Google Scholar] [CrossRef]
- Pfeifer, F.; Gregor, D.; Hofacker, A.; Ploßer, P.; Zimmermann, P. Regulation of gas vesicle formation in halophilic archaea. J. Mol. Microbiol. Biotechnol. 2002, 4, 175–181. [Google Scholar]
- Rodriguez-Valera, F.; Juez, G.; Kushner, D.J. Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. System. Appl. Microbiol. 1983, 4, 369–381. [Google Scholar] [CrossRef]
- Montalvo-Rodríguez, R.; Vreeland, R.H.; Oren, A.; Kessel, M.; Betancourt, C.; López-Garriga, J. Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int. J. Syst. Bacteriol. 1998, 48, 1305–1312. [Google Scholar] [CrossRef]
- Elevi Bardavid, R.; Mana, L.; Oren, A. Haloplanus natans gen. nov., sp. nov., an extremely halophilic gas-vacuolate archaeon from Dead Sea–Red Sea water mixtures in experimental mesocosms. Int. J. Syst. Evol. Microbiol. 2007, 57, 780–783. [Google Scholar] [CrossRef]
- Cui, H.-L.; Gao, X.; Li, X.-Y.; Xu, X.-W.; Zhou, Y.-G.; Liu, H.-C.; Zhou, P.-J. Haloplanus vescus sp. nov., an extremely halophilic Archaea from a marine solar saltern, and emended description of the genus Haloplanus. Int. J. Syst. Evol. Microbiol. 2010, 60, 1824–1827. [Google Scholar]
- Cui, H.-L.; Gao, X.; Yang, X.; Xu, X.-W. Haloplanus aerogenes sp. nov., an extremely halophilic archaeon from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 2011, 61, 965–968. [Google Scholar] [CrossRef]
- Burns, D.G.; Janssen, P.H.; Itoh, T.; Kamekura, M.; Li, Z.; Jensen, G.; Rodríguez-Valera, F.; Bolhuis, H.; Dyall-Smith, M.L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int. J. Syst. Evol. Microbiol. 2007, 57, 387–392. [Google Scholar]
- Mwatha, W.E.; Grant, W.D. Natronobacterium vacuolata, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int. J. Syst. Bacteriol. 1993, 43, 401–404. [Google Scholar] [CrossRef]
- Gruber, C.; Legat, A.; Pfaffenhuemer, M.; Radax, C.; Weidler, G.; Busse, H.-J.; Stan-Lotter, H. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 2004, 8, 431–439. [Google Scholar] [CrossRef]
- Walsby, A.E. A square bacterium. Nature 1980, 283, 69–71. [Google Scholar] [CrossRef]
- Bolhuis, H. Walsby's square archaeon. It's hip to be square, but even more hip to be culturable. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 187–199. [Google Scholar]
- Bolhuis, H.; te Poele, E.M.; Rodríguez-Valera, F. Isolation and cultivation of Walsby's square archaeon. Environ. Microbiol. 2004, 6, 1287–1291. [Google Scholar] [CrossRef]
- Burns, D.G.; Camakaris, H.M.; Janssen, P.H.; Dyall-Smith, M.L. Cultivation of Walsby's square haloarchaeon. FEMS Microbiol. Lett. 2004, 238, 469–473. [Google Scholar]
- Sublimi-Saponetti, M.; Bobba, F.; Salerno, G.; Scarfato, A.; Corcelli, A.; Cucolo, A.M. Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi. PLoS One 2011. [Google Scholar] [CrossRef]
- Bolhuis, H.; Palm, P.; Wende, A.; Falb, M.; Rampp, M.; Rodriguez-Valera, F.; Pfeiffer, F.; Oesterhelt, D. The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 2006, 7, 169. [Google Scholar] [CrossRef]
- Mayr, A.; Pfeifer, F. The characterization of the nv-gpvACNOFGH gene cluster involved in gas vesicle formation in Natronobacterium vacuolatum. Arch. Microbiol. 1997, 168, 24–32. [Google Scholar] [CrossRef]
- Walsby, A.E. Archaea with square cells. Trends Microbiol. 2005, 13, 193–195. [Google Scholar] [CrossRef]
- Beard, S.J.; Hayes, P.K.; Walsby, A.E. Growth competition between Halobacterium salinarum strain PHH1 and mutants affected in gas vesicle synthesis. Microbiology UK 1997, 143, 467–473. [Google Scholar] [CrossRef]
- Sundararajan, A.; Ju, L.-K. Use of cyanobacterial gas vesicles as oxygen carriers. Cytotechnology 2006, 52, 139–149. [Google Scholar]
- Richard, T. Calculating the oxygen diffusion coefficient in water. Available online: http://compost.css.cornell.edu/oxygen/oxygen.diff.water.html (accessed on 27 November 2012).
- Oren, A.; Trüper, H.G. Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol. Lett. 1990, 70, 33–36. [Google Scholar] [CrossRef]
- Hartmann, R.; Sickinger, H.-D.; Oesterhelt, D. Anaerobic growth of halobacteria. Proc. Natl. Acad. Sci. USA 1980, 77, 3821–3825. [Google Scholar] [CrossRef]
- Oesterhelt, D. Anaerobic growth of halobacteria. Meth. Enzymol. 1982, 88, 417–420. [Google Scholar]
- Oren, A.; Litchfield, C.D. A procedure for the enrichment and isolation of Halobacterium species. FEMS Microbiol. Lett. 1999, 173, 353–358. [Google Scholar] [CrossRef]
- Hechler, T.; Pfeifer, F. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea. Mol. Microbiol. 2009, 71, 132–145. [Google Scholar] [CrossRef]
- DasSarma, P.; Zamora, R.C.; Müller, J.A.; DasSarma, S. Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J. Bacteriol. 2012, 194, 5530–5537. [Google Scholar] [CrossRef]
- Müller, J.A.; DasSarma, S. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: Dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J. Bacteriol. 2005, 187, 1659–1667. [Google Scholar] [CrossRef]
- Englert, C.; Horne, M.; Pfeifer, F. Expression of the major gas vesicle protein in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 1990, 222, 225–232. [Google Scholar] [CrossRef]
- Röder, R.; Pfeifer, F. Influence of salt on the transcription of the gas-vesicle gene of Haloferax mediterranei and identification of the endogeneous transcriptional activator. Microbiology UK 1996, 142, 1715–1723. [Google Scholar] [CrossRef]
- Bleiholder, A.; Frommherz, R.; Teufel, K.; Pfeifer, F. Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch. Microbiol. 2012, 194, 269–279. [Google Scholar] [CrossRef]
- Coker, J.; DasSarma, P.; Kumar, J.; Müller, J.; DasSarma, S. Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: Responses to changes in salinity and temperature. Saline Syst. 2007, 3, 6. [Google Scholar] [CrossRef]
- Bickel-Sandkötter, S.; Gärtner, W.; Dane, M. Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch. Microbiol. 1996, 166, 1–11. [Google Scholar] [CrossRef]
- Lobasso, S.; Lopalco, P.; Vitale, R.; Sublimi Saponetti, M.; Capitanio, G.; Mangini, V.; Milano, F.; Trotta, M.; Corcelli, A. The light-activated proton pump BopI of the archaeon Haloquadratum walsbyi. Photochem. Photobiol. 2012, 88, 690–700. [Google Scholar] [CrossRef]
- Kessel, M.; Cohen, Y.; Walsby, A.E. Structure and physiology of square-shaped and other halophilic bacteria from the Gavish Sabkha. In Hypersaline Ecosystems. The Gavish Sabkha; Friedman, G.M., Krumbein, W.E., Eds.; Springer-Verlag: Berlin, Germany, 1985; pp. 267–287. [Google Scholar]
- Simon, R.D. Interactions between light and gas vacuoles in Halobacterium salinarium strain 5: effect of ultraviolet light. Appl. Environ. Microbiol. 1980, 40, 984–987. [Google Scholar]
- Oren, A. Halophilic Microorganisms and Their Environments; Kluwer Scientific Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Lopalco, P.; Lobasso, S.; Baronio, M.; Angelini, R.; Corcelli, A. Chapter 6. In Halophiles and Hypersaline Environments; Ventosa, A., Ed.; Springer-Verlag: Berlin, Germany, 2011; pp. 123–135. [Google Scholar]
- Bodaker, I.; Sharon, I.; Suzuki, M.T.; Reingersch, R.; Shmoish, M.; Andreishcheva, E.; Sogin, M.L.; Rosenberg, M.; Belkin, S.; Oren, A.; Béjà, O. Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J. 2010, 4, 399–407. [Google Scholar] [CrossRef]
- Antón, J.; Llobet-Brossa, E.; Rodríguez-Valera, F.; Amann, R. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1999, 1, 517–523. [Google Scholar] [CrossRef]
- Oren, A.; Duker, S.; Ritter, S. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol. Lett. 1996, 138, 135–140. [Google Scholar] [CrossRef]
- Romanenko, V.I. Square microcolonies in the surface water film of the Saxkoye lake (in Russian). Mikrobiologiya (USSR) 1981, 50, 571–574. [Google Scholar]
- Rodriguez-Valera, F.; Ventosa, A.; Juez, G.; Imhoff, J.F. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb. Ecol. 1985, 11, 107–115. [Google Scholar] [CrossRef]
- Warkentin, M.; Schumann, R.; Oren, A. Community respiration studies in saltern crystallizer ponds. Aquat. Microb. Ecol. 2009, 56, 255–261. [Google Scholar] [CrossRef]
- Stoeckenius, W. Walsby's square bacterium: Fine structure of an orthogonal prokaryote. J. Bacteriol. 1981, 148, 352–360. [Google Scholar]
- Kessel, M.; Cohen, Y. Ultrastructure of square bacteria from a brine pool in southern Sinai. J. Bacteriol. 1982, 150, 851–860. [Google Scholar]
- Parkes, K.; Walsby, A.E. Ultrastructure of a gas-vacuolate square bacterium. J. Gen. Microbiol. 1981, 126, 503–506. [Google Scholar]
- Oren, A.; Priel, N.; Shapiro, O.; Siboni, N. Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. Saline Syst. 2006, 2, 4. [Google Scholar] [CrossRef]
- Denny, M.W. Air and Water: The Biology and Physics of Life's Media; Princeton University Press: Princeton, New Jersey, USA, 1993. [Google Scholar]
- McNown, J.S.; Malaika, J. Effect of particle shape on settling velocity at low Reynolds numbers. Trans. Amer. Geophys. Union 1950, 31, 74–82. [Google Scholar] [CrossRef]
- Purcell, E.M. Life at low Reynolds number. Amer. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef]
- Coker, J.A.; DasSarma, P.; Kumar, J.; Müller, J.A.; DasSarma, S. Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: Responses to changes in salinity and temperature. Saline Syst. 2007, 3, 6. [Google Scholar] [CrossRef]
- Oren, A. Clostridium lortetii sp. nov., a halophilic obligately anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 1983, 136, 42–48. [Google Scholar] [CrossRef]
- Oren, A.; Pohla, H.; Stackebrandt, E. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov. System. Appl. Microbiol. 1987, 9, 239–246. [Google Scholar] [CrossRef]
- Zhilina, T.N.; Tourova, T.P.; Kuznetsov, B.B.; Kostrikina, N.A.; Lysenko, A.M. Orenia sivashensis sp. nov., a new moderately halophilic anaerobic bacterium from lake Sivash lagoons. Microbiology (Russia) 1999, 68, 452–459. [Google Scholar]
- Duda, V.I.; Makar'eva, E.D. Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus (in Russian). Mikrobiologiya 1978, 70, 689–694. [Google Scholar]
- Larsen, H. The halobacteria's confusion to biology. Antonie van Leeuwenhoek 1973, 39, 383–396. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oren, A. The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence. Life 2013, 3, 1-20. https://doi.org/10.3390/life3010001
Oren A. The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence. Life. 2013; 3(1):1-20. https://doi.org/10.3390/life3010001
Chicago/Turabian StyleOren, Aharon. 2013. "The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence" Life 3, no. 1: 1-20. https://doi.org/10.3390/life3010001
APA StyleOren, A. (2013). The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence. Life, 3(1), 1-20. https://doi.org/10.3390/life3010001