Topical Dopamine Application on Form-Deprivation Myopia in Rabbits
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Form-Deprivation Myopia Induction
2.3. Topical Dopamine Treatment
2.4. Main Outcome Measures
2.5. Histology
2.6. Statistical Analysis
3. Results
3.1. Efficacy of Topical Dopamine in Rabbits
3.2. Safety of Topical Dopamine in Rabbits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grzybowski, A.; Kanclerz, P.; Tsubota, K.; Lanca, C.; Saw, S.M. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Younan, C.; Mitchell, P.; Cumming, R.G.; Rochtchina, E.; Wang, J.J. Myopia and incident cataract and cataract surgery: The Blue Mountains Eye Study. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3625–3632. [Google Scholar]
- Marcus, M.W.; de Vries, M.M.; Junoy Montolio, F.G.; Jansonius, N.M. Myopia as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. Ophthalmology 2011, 118, 1989–1994.e2. [Google Scholar] [CrossRef]
- Ruiz-Medrano, J.; Montero, J.A.; Flores-Moreno, I.; Arias, L.; Garcia-Layana, A.; Ruiz-Moreno, J.M. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN). Prog. Retin. Eye Res. 2019, 69, 80–115. [Google Scholar] [CrossRef] [PubMed]
- Haarman, A.E.G.; Enthoven, C.A.; Tideman, J.W.L.; Tedja, M.S.; Verhoeven, V.J.M.; Klaver, C.C.W. The complications of myopia: A review and meta-analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- Iwase, A.; Araie, M.; Tomidokoro, A.; Yamamoto, T.; Shimizu, H.; Kitazawa, Y.; Tajimi Study, G. Prevalence and causes of low vision and blindness in a Japanese adult population: The Tajimi Study. Ophthalmology 2006, 113, 1354–1362. [Google Scholar] [CrossRef]
- Wong, Y.L.; Sabanayagam, C.; Ding, Y.; Wong, C.W.; Yeo, A.C.; Cheung, Y.B.; Cheung, G.; Chia, A.; Ohno-Matsui, K.; Wong, T.Y.; et al. Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4603–4613. [Google Scholar] [CrossRef]
- Stone, R.A.; Lin, T.; Laties, A.M.; Iuvone, P.M. Retinal dopamine and form-deprivation myopia. Proc. Natl. Acad. Sci. USA 1989, 86, 704–706. [Google Scholar] [CrossRef]
- Iuvone, P.M.; Tigges, M.; Stone, R.A.; Lambert, S.; Laties, A.M. Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1674–1677. [Google Scholar]
- McBrien, N.A.; Cottriall, C.L.; Annies, R. Retinal acetylcholine content in normal and myopic eyes: A role in ocular growth control? Vis. Neurosci. 2001, 18, 571–580. [Google Scholar] [CrossRef]
- McFadden, S.A.; Howlett, M.H.; Mertz, J.R. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vis. Res. 2004, 44, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Nickla, D.L.; Wilken, E.; Lytle, G.; Yom, S.; Mertz, J. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms. Exp. Eye Res. 2006, 83, 456–464. [Google Scholar] [CrossRef]
- Feldkaemper, M.P.; Schaeffel, F. Evidence for a potential role of glucagon during eye growth regulation in chicks. Vis. Neurosci. 2002, 19, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Feldkaemper, M.; Schaeffel, F. An updated view on the role of dopamine in myopia. Exp. Eye Res. 2013, 114, 106–119. [Google Scholar] [CrossRef]
- Zhou, X.; Pardue, M.T.; Iuvone, P.M.; Qu, J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Iuvone, P.M.; Tigges, M.; Fernandes, A.; Tigges, J. Dopamine synthesis and metabolism in rhesus monkey retina: Development, aging, and the effects of monocular visual deprivation. Vis. Neurosci. 1989, 2, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Papastergiou, G.I.; Schmid, G.F.; Laties, A.M.; Pendrak, K.; Lin, T.; Stone, R.A. Induction of axial eye elongation and myopic refractive shift in one-year-old chickens. Vis. Res. 1998, 38, 1883–1888. [Google Scholar] [CrossRef]
- McBrien, N.A.; Gentle, A. The role of visual information in the control of scleral matrix biology in myopia. Curr. Eye Res. 2001, 23, 313–319. [Google Scholar] [CrossRef]
- Dong, F.; Zhi, Z.; Pan, M.; Xie, R.; Qin, X.; Lu, R.; Mao, X.; Chen, J.F.; Willcox, M.D.; Qu, J.; et al. Inhibition of experimental myopia by a dopamine agonist: Different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol. Vis. 2011, 17, 2824–2834. [Google Scholar]
- Chen, S.; Zhi, Z.; Ruan, Q.; Liu, Q.; Li, F.; Wan, F.; Reinach, P.S.; Chen, J.; Qu, J.; Zhou, X. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2306–2316. [Google Scholar] [CrossRef]
- Shu, Z.; Chen, K.; Wang, Q.; Wu, H.; Zhu, Y.; Tian, R.; Yan, W.; Huang, Q.; Zhang, C.; Xiong, W.; et al. The role of retinal dopamine D1 receptors in ocular growth and myopia development in mice. J. Neurosci. 2023, 43, 8231–8242. [Google Scholar] [CrossRef]
- Landis, E.G.; Park, H.N.; Chrenek, M.; He, L.; Sidhu, C.; Chakraborty, R.; Strickland, R.; Iuvone, P.M.; Pardue, M.T. Ambient light regulates retinal dopamine signaling and myopia susceptibility. Investig. Ophthalmol. Vis. Sci. 2021, 62, 28. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sankaridurg, P.; Wang, J.; Chen, J.; Naduvilath, T.; He, M.; Zhu, Z.; Li, W.; Morgan, I.G.; Xiong, S.; et al. Time outdoors in reducing myopia: A school-based cluster randomized trial with objective monitoring of outdoor time and light intensity. Ophthalmology 2022, 129, 1245–1254. [Google Scholar] [CrossRef]
- Dhakal, R.; Shah, R.; Huntjens, B.; Verkicharla, P.K.; Lawrenson, J.G. Time spent outdoors as an intervention for myopia prevention and control in children: An overview of systematic reviews. Ophthalmic Physiol. Opt. 2022, 42, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Lingham, G.; Yazar, S.; Lucas, R.M.; Milne, E.; Hewitt, A.W.; Hammond, C.J.; MacGregor, S.; Rose, K.A.; Chen, F.K.; He, M.; et al. Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Sci. Rep. 2021, 11, 6337. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sinnott, L.T.; Mutti, D.O.; Mitchell, G.L.; Moeschberger, M.L.; Zadnik, K. Parental history of myopia, sports and outdoor activities, and future myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3524–3532. [Google Scholar] [CrossRef]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef]
- Ashby, R.; Ohlendorf, A.; Schaeffel, F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5348–5354. [Google Scholar] [CrossRef]
- Jiang, L.; Long, K.; Schaeffel, F.; Zhou, X.; Zheng, Y.; Ying, H.; Lu, F.; Stell, W.K.; Qu, J. Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus). Investig. Ophthalmol. Vis. Sci. 2014, 55, 7508–7519. [Google Scholar] [CrossRef]
- Guo, S.S.; Sivak, J.G.; Callender, M.G.; Diehl-Jones, B. Retinal dopamine and lens-induced refractive errors in chicks. Curr. Eye Res. 1995, 14, 385–389. [Google Scholar] [CrossRef]
- Mao, J.; Liu, S.; Qin, W.; Li, F.; Wu, X.; Tan, Q. Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom. Vis. Sci. 2010, 87, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liu, Q.; Ma, P.; Zhong, X.; Wu, J.; Ge, J. Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 1329–1335. [Google Scholar] [CrossRef]
- Thomson, K.; Karouta, C.; Morgan, I.; Kelly, T.; Ashby, R. Effectiveness and safety of topical levodopa in a chick model of myopia. Sci. Rep. 2019, 9, 18345. [Google Scholar] [CrossRef]
- Thomson, K.; Karouta, C.; Ashby, R. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks. Exp. Eye Res. 2020, 200, 108233. [Google Scholar] [CrossRef] [PubMed]
- Barathi, V.A.; Boopathi, V.G.; Yap, E.P.; Beuerman, R.W. Two models of experimental myopia in the mouse. Vis. Res. 2008, 48, 904–916. [Google Scholar] [CrossRef] [PubMed]
- El-Nimri, N.W.; Wildsoet, C.F. Effects of topical latanoprost on intraocular pressure and myopia progression in young guinea pigs. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2644–2651. [Google Scholar] [CrossRef]
- Kito, G.; Atsumi, I.; Yamagiwa, Y.; Sakaki, H.; Kurata, M. Anatomical and histological sex differences in the eye and its accessory tissues in Dutch belted rabbits. Fundam. Toxicol. Sci. 2018, 5, 141–147. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, X.; Vincent, D.F.; Threadgill, D.W.; Bartholin, L.; Li, Q. Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling. Reprod. Biol. Endocrinol. 2017, 15, 94. [Google Scholar] [CrossRef]
- Lee, J.W.; Lim, M.Y.; Park, Y.S.; Park, S.J.; Kim, I.B. Reexamination of dopaminergic amacrine cells in the rabbit retina: Confocal analysis with double- and triple-labeling immunohistochemistry. Exp. Neurobiol. 2017, 26, 329–338. [Google Scholar] [CrossRef]
- Schmid, K.L.; Wildsoet, C.F. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom. Vis. Sci. 2004, 81, 137–147. [Google Scholar] [CrossRef]
- Yan, T.; Xiong, W.; Huang, F.; Zheng, F.; Ying, H.; Chen, J.F.; Qu, J.; Zhou, X. Daily injection but not continuous infusion of apomorphine inhibits form-deprivation myopia in mice. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2475–2485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, G. Protective effects of increased outdoor time against myopia: A review. J. Int. Med. Res. 2020, 48, 300060519893866. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, H. Light signaling and myopia development: A review. Ophthalmol. Ther. 2022, 11, 939–957. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.X.; Hua, W.J.; Jiang, X.; Wu, X.Y.; Yang, J.W.; Gao, G.P.; Fang, Y.; Pei, C.L.; Wang, S.; Zhang, J.Z.; et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: The Sujiatun Eye Care Study. BMC Ophthalmol. 2015, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Schaeffel, F.; Jiang, B.; Feldkaemper, M. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4413–4424. [Google Scholar] [CrossRef]
- Nickla, D.L.; Totonelly, K.; Dhillon, B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp. Eye Res. 2010, 91, 715–720. [Google Scholar] [CrossRef]
- Ward, A.H.; Siegwart, J.T.; Frost, M.R.; Norton, T.T. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Vis. Neurosci. 2017, 34, E003. [Google Scholar] [CrossRef]
- Huang, F.; Yan, T.; Shi, F.; An, J.; Xie, R.; Zheng, F.; Li, Y.; Chen, J.; Qu, J.; Zhou, X. Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5537–5544. [Google Scholar] [CrossRef]
- Troilo, D.; Smith, E.L., 3rd; Nickla, D.L.; Ashby, R.; Tkatchenko, A.V.; Ostrin, L.A.; Gawne, T.J.; Pardue, M.T.; Summers, J.A.; Kee, C.S.; et al. IMI—Report on experimental models of emmetropization and myopia. Investig. Ophthalmol. Vis. Sci. 2019, 60, M31–M88. [Google Scholar] [CrossRef]
- Harcourt-Brown, F. The rabbit consultation and clinical techniques. In Textbook of Rabbit Medicine; Elsevier: Amsterdam, The Netherlands, 2002; p. 52. [Google Scholar]
- Baumans, V. Environmental enrichment for laboratory rodents and rabbits: Requirements of rodents, rabbits, and research. ILAR J. 2005, 46, 162–170. [Google Scholar] [CrossRef]
- Glickstein, M.; Millodot, M. Retinoscopy and eye size. Science 1970, 168, 605–606. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Zadnik, K.; Johnson, C.A.; Howland, H.C.; Murphy, C.J. Retinoscopic measurement of the refractive state of the rat. Vis. Res. 1992, 32, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Schaeffel, F.; Burkhardt, E.; Howland, H.C.; Williams, R.W. Measurement of refractive state and deprivation myopia in two strains of mice. Optom. Vis. Sci. 2004, 81, 99–110. [Google Scholar] [CrossRef]
- Jiang, L.; Schaeffel, F.; Zhou, X.; Zhang, S.; Jin, X.; Pan, M.; Ye, L.; Wu, X.; Huang, Q.; Lu, F.; et al. Spontaneous axial myopia and emmetropization in a strain of wild-type guinea pig (Cavia porcellus). Investig. Ophthalmol. Vis. Sci. 2009, 50, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
Group | Week 1 | Week 2 | Week 3 | Week 4 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median | Mean ± SD | Median | Mean ± SD | Median | Mean ± SD | Median | ||
Dopamine | FD | 12.10 ± 0.33 | 12.10 | 13.49 ± 0.51 | 13.44 | 14.23 ± 0.47 | 14.18 | 15.12 ± 0.36 | 15.10 |
Open | 11.86 ± 0.24 | 11.89 | 13.30 ± 0.25 | 13.30 | 14.01 ± 0.45 | 14.19 | 14.98 ± 0.29 | 15.03 | |
Control | FD | 12.12 ± 0.39 | 12.00 | 13.81 ± 0.77 | 13.50 | 14.97 ± 0.55 | 14.72 | 15.63 ± 0.33 | 15.73 |
Open | 11.91 ± 0.41 | 11.86 | 13.31 ± 0.48 | 13.30 | 14.36 ± 0.52 | 14.01 | 15.07 ± 0.34 | 14.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Hwang, J.-M.; Yang, H.K. Topical Dopamine Application on Form-Deprivation Myopia in Rabbits. Life 2025, 15, 461. https://doi.org/10.3390/life15030461
Kim DH, Hwang J-M, Yang HK. Topical Dopamine Application on Form-Deprivation Myopia in Rabbits. Life. 2025; 15(3):461. https://doi.org/10.3390/life15030461
Chicago/Turabian StyleKim, Dong Hyun, Jeong-Min Hwang, and Hee Kyung Yang. 2025. "Topical Dopamine Application on Form-Deprivation Myopia in Rabbits" Life 15, no. 3: 461. https://doi.org/10.3390/life15030461
APA StyleKim, D. H., Hwang, J.-M., & Yang, H. K. (2025). Topical Dopamine Application on Form-Deprivation Myopia in Rabbits. Life, 15(3), 461. https://doi.org/10.3390/life15030461