The Effect of Peripheral Magnetic Stimulation on Functional Mobility and Morphology in Cerebral Palsy with Spastic Diplegia: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Interventions
2.3.1. Physical Therapy Intervention
2.3.2. Peripheral Magnetic Stimulation Plus Physical Therapy
2.3.3. Control
2.4. Outcome Measures
2.4.1. Muscle Ultrasound Imaging
2.4.2. The 30 s Sit-to-Stand Test
2.4.3. The Functional Reach Test
2.4.4. The Timed up and Go Test
2.4.5. The 10 m Walk Test
2.4.6. The 6-Minute Walk Test
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Fogarty, M.J.; Sieck, G.C. A Critical Evaluation of Current Concepts in Cerebral Palsy. Physiol. Bethesda 2019, 34, 216–229. [Google Scholar] [CrossRef]
- Lu, P.-S.; Toh, C.-H.; Yeh, C.-H.; Wang, H.-S.; Lin, K.-L.; Wong, A.M.-C. Diffusion-Weighted Imaging of Periventricular Leukomalacia in very Young Children: Assessment of Peritrigonal Stripe of Restricted Diffusion. Neuropediatrics 2017, 48, 86–90. [Google Scholar] [CrossRef]
- Shamsoddini, A.; Amirsalari, S.; Hollisaz, M.-T.; Rahimnia, A.; Khatibi-Aghda, A. Management of Spasticity in Children with Cerebral Palsy. Iran. J. Pediatr. 2014, 24, 345–351. [Google Scholar] [PubMed]
- Dodd, K.J.; Taylor, N.F.; Graham, H.K. A Randomized Clinical Trial of Strength Training in Young People with Cerebral Palsy. Dev. Med. Child Neurol. 2003, 45, 652–657. [Google Scholar] [CrossRef]
- Adiguzel, H.; Kirmaci, Z.I.K.; Gogremis, M.; Kirmaci, Y.S.; Dilber, C.; Berktas, D.T. The Effect of Proprioceptive Neuromuscular Facilitation on Functional Skills, Muscle Strength, and Trunk Control in Children with Cerebral Palsy: A Randomized Controlled Trial. Early Hum. Dev. 2024, 192, 106010. [Google Scholar] [CrossRef]
- Kruse, A.; Habersack, A.; Jaspers, R.T.; Schrapf, N.; Weide, G.; Svehlik, M.; Tilp, M. Acute Effects of Static and Proprioceptive Neuromuscular Facilitation Stretching of the Plantar Flexors on Ankle Range of Motion and Muscle-Tendon Behavior in Children with Spastic Cerebral Palsy-A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 11599. [Google Scholar] [CrossRef]
- Ruthiraphong, P.; Sukhumvada, T.; Wongphaet, P. Immediate Effect of Repetitive Peripheral Magnetic Stimulation in Hemiplegic Patients with Arm Paresis: A Pilot Study. ASEAN J. Rehabil. Med. 2021, 31, 16. [Google Scholar]
- Jiang, Y.-F.; Zhang, D.; Zhang, J.; Hai, H.; Zhao, Y.-Y.; Ma, Y.-W. A Randomized Controlled Trial of Repetitive Peripheral Magnetic Stimulation applied in Early Subacute Stroke: Effects on Severe Upper-limb Impairment. Clin. Rehabil. 2022, 36, 693–702. [Google Scholar] [CrossRef]
- Fawaz, S.I.; Izumi, S.-I.; Zaki, A.S.; Eldiasty, S.E.; Saadawy, A.; eldin Saber, H.G.; Gadallah, M.F.; Labib, H.S. Repetitive Peripheral Magnetic Stimulation for Improving Upper Limb Function in Post-Stroke Hemiparesis. Egypt. Rheumatol. Rehabil. 2023, 50, 35. [Google Scholar] [CrossRef]
- Flamand, V.H.; Beaulieu, L.-D.; Nadeau, L.; Schneider, C. Peripheral Magnetic Stimulation to Decrease Spasticity in Cerebral Palsy. Pediatr. Neurol. 2012, 47, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Provencher, J.; Beaulieu-Guay, É.M.; Loranger, S.D.; Schneider, C. Repetitive Peripheral Magnetic Stimulation to Improve Ankle Function and Gait in Cerebral Palsy at Adulthood: An Open-Label Case Study. Brain Res. 2022, 1792, 147999. [Google Scholar] [CrossRef] [PubMed]
- Gallotto, S.; Seeck, M. EEG Biomarker Candidates for the Identification of Epilepsy. Clin. Neurophysiol. Pract. 2023, 8, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Grosse, L.; Schnabel, J.F.; Börner-Schröder, C.; Späh, M.A.; Meuche, A.C.; Sollmann, N.; Breuer, U.; Warken, B.; Hösl, M.; Heinen, F.; et al. Safety and Feasibility of Functional Repetitive Neuromuscular Magnetic Stimulation of the Gluteal Muscles in Children and Adolescents with Bilateral Spastic Cerebral Palsy. Children 2023, 10, 1768. [Google Scholar] [CrossRef]
- Abd-Elfattah, H.M.; Ameen, F.H.; Elkalla, R.A.; Aly, S.M.; Abd-Elrahman, N.A.F. Loaded Functional Strength Training versus Traditional Physical Therapy on Hip and Knee Extensors Strength and Function Walking Capacity in Children with Hemiplegic Cerebral Palsy: Randomized Comparative Study. Children 2022, 9, 946. [Google Scholar] [CrossRef]
- Steele, K.; Damiano, D.; Eek, M.; Unger, M.; Delp, S. Characteristics Associated with Improved Knee Extension after Strength Training for Individuals with Cerebral Palsy and Crouch Gait. J. Pediatr. Rehabil. Med. 2012, 5, 99–106. [Google Scholar] [CrossRef]
- Pan, J.-X.; Diao, Y.-X.; Peng, H.-Y.; Wang, X.-Z.; Liao, L.-R.; Wang, M.-Y.; Wen, Y.-L.; Jia, Y.-B.; Liu, H. Effects of Repetitive Peripheral Magnetic Stimulation on Spasticity Evaluated with Modified Ashworth Scale/Ashworth Scale in Patients with Spastic Paralysis: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 13, 997913. [Google Scholar] [CrossRef]
- Muanjai, P.; Mickevicius, M.; Sniečkus, A.; Sipavičienė, S.; Satkunskiene, D.; Kamandulis, S.; Jones, D.A. Low Frequency Fatigue and Changes in Muscle Fascicle Length Following Eccentric Exercise of the Knee Extensors. Exp. Physiol. 2020, 105, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Muanjai, P.; Srijunto, W.; Werasirirat, P.; Mickevicius, M.; Namsawang, J. Alterations in Leg Flexibility, Joint Stiffness, and Muscle Architecture Following a Single Bout of Stretching and Eccentric Exercise in Female Older Adults|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.7752%2Fjpes.2022.11348?sid=ebsco:plink:crawler&id=ebsco:doi:10.7752%2Fjpes.2022.11348 (accessed on 28 February 2025).
- Young, H.-J.; Jenkins, N.T.; Zhao, Q.; Mccully, K.K. Measurement of Intramuscular Fat by Muscle Echo Intensity. Muscle Nerve 2015, 52, 963–971. [Google Scholar] [CrossRef]
- Peungsuwan, P.; Parasin, P.; Siritaratiwat, W.; Prasertnu, J.; Yamauchi, J. Effects of Combined Exercise Training on Functional Performance in Children with Cerebral Palsy: A Randomized-Controlled Study. Pediatr. Phys. Ther. 2017, 29, 39–46. [Google Scholar] [CrossRef]
- Dhote, S.N.; Khatri, P.A.; Ganvir, S.S. Reliability of “Modified Timed up and Go” Test in Children with Cerebral Palsy. J. Pediatr. Neurosci. 2012, 7, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.-H.; Oh, D.-W. Effects of Incorporating Dual Task into Repeated 6-Min Walk Test on Balance and Walking Functions in Patients with Subacute Stroke: A Randomized Controlled Trial. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2023, 28, e2003. [Google Scholar] [CrossRef]
- Nsenga Leunkeu, A.; Shephard, R.J.; Ahmaidi, S. Six-Minute Walk Test in Children with Cerebral Palsy Gross Motor Function Classification System Levels I and II: Reproducibility, Validity, and Training Effects. Arch. Phys. Med. Rehabil. 2012, 93, 2333–2339. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Rajak, B.L.; Bhatia, D.; Mukherjee, A. Neuromodulatory Effect of Repetitive Transcranial Magnetic Stimulation Pulses on Functional Motor Performances of Spastic Cerebral Palsy Children. J. Med. Eng. Technol. 2018, 42, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. The Prevention and Handling of the Missing Data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013; ISBN 978-0-203-77158-7. [Google Scholar]
- Suzuki, K.; Ito, T.; Okada, Y.; Hiraoka, T.; Hanayama, K.; Tsubahara, A. Preventive Effects of Repetitive Peripheral Magnetic Stimulation on Muscle Atrophy in the Paretic Lower Limb of Acute Stroke Patients: A Pilot Study. Prog. Rehabil. Med. 2020, 5, 20200008. [Google Scholar] [CrossRef]
- Knutson, J.S.; Fu, M.J.; Sheffler, L.R.; Chae, J. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 729–745. [Google Scholar] [CrossRef]
- Hirono, T.; Ikezoe, T.; Taniguchi, M.; Nojiri, S.; Tanaka, H.; Ichihashi, N. Acute Effects of Repetitive Peripheral Magnetic Stimulation Following Low-Intensity Isometric Exercise on Muscle Swelling for Selective Muscle in Healthy Young Men. Electromagn. Biol. Med. 2021, 40, 420–427. [Google Scholar] [CrossRef]
- Hanssen, B.; Peeters, N.; De Beukelaer, N.; Vannerom, A.; Peeters, L.; Molenaers, G.; Van Campenhout, A.; Deschepper, E.; Van den Broeck, C.; Desloovere, K. Progressive Resistance Training for Children with Cerebral Palsy: A Randomized Controlled Trial Evaluating the Effects on Muscle Strength and Morphology. Front. Physiol. 2022, 13, 911162. [Google Scholar] [CrossRef]
- Harjpal, P.; Raipure, A.; Kovela, R.K.; Qureshi, M.I. The Effect of Neuro-Physiotherapy on Gross Motor Function in a Male Child with Spastic Diplegic Cerebral Palsy: A Case Report. Cureus 2022, 14, e29310. [Google Scholar] [CrossRef] [PubMed]
- Kaya, F. Positive Effects of Proprioceptive Neuromuscular Facilitation Stretching on Sports Performance: A Review. J. Educ. Train. Stud. 2018, 6, 1. [Google Scholar] [CrossRef]
- Qi, F.; Nitsche, M.A.; Ren, X.; Wang, D.; Wang, L. Top-down and Bottom-up Stimulation Techniques Combined with Action Observation Treatment in Stroke Rehabilitation: A Perspective. Front. Neurol. 2023, 14, 1156987. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.-D.; Massé-Alarie, H.; Camiré-Bernier, S.; Ribot-Ciscar, É.; Schneider, C. After-Effects of Peripheral Neurostimulation on Brain Plasticity and Ankle Function in Chronic Stroke: The Role of Afferents Recruited. Neurophysiol. Clin. Clin. Neurophysiol. 2017, 47, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Kagaya, H.; Nagashima, Y.; Mori, S.; Shibata, S.; Inamoto, Y.; Aoyagi, Y.; Toda, F.; Ozeki, M.; Saitoh, E. Repetitive Peripheral Magnetic Stimulation for Strengthening of the Suprahyoid Muscles: A Randomized Controlled Trial. Neuromodulation J. Int. Neuromodul. Soc. 2020, 23, 778–783. [Google Scholar] [CrossRef]
- Wegrzyk, J.; Ranjeva, J.-P.; Fouré, A.; Kavounoudias, A.; Vilmen, C.; Mattei, J.-P.; Guye, M.; Maffiuletti, N.A.; Place, N.; Bendahan, D.; et al. Specific Brain Activation Patterns Associated with Two Neuromuscular Electrical Stimulation Protocols. Sci. Rep. 2017, 7, 2742. [Google Scholar] [CrossRef]
- Salphale, V.G.; Kovela, R.K.; Qureshi, M.I.; Harjpal, P. Effectiveness of Pelvic Proprioceptive Neuromuscular Facilitation on Balance and Gait Parameters in Children with Spastic Diplegia. Cureus 2022, 14, e30571. [Google Scholar] [CrossRef]
- Saether, R.; Helbostad, J.L.; Riphagen, I.I.; Vik, T. Clinical Tools to Assess Balance in Children and Adults with Cerebral Palsy: A Systematic Review. Dev. Med. Child Neurol. 2013, 55, 988–999. [Google Scholar] [CrossRef]
- Dewar, R.M.; Tucker, K.; Claus, A.P.; Ware, R.S.; Johnston, L.M. Postural Control Performance on the Functional Reach Test: Validity of the Kids-Balance Evaluation Systems Test (Kids-BESTest) Criteria. Arch. Phys. Med. Rehabil. 2021, 102, 1170–1179. [Google Scholar] [CrossRef]
- Baek, J.; Park, N.; Lee, B.; Jee, S.; Yang, S.; Kang, S. Effects of Repetitive Peripheral Magnetic Stimulation Over Vastus Lateralis in Patients After Hip Replacement Surgery. Ann. Rehabil. Med. 2018, 42, 67–75. [Google Scholar] [CrossRef]
- Carey, H.; Martin, K.; Combs-Miller, S.; Heathcock, J.C. Reliability and Responsiveness of the Timed Up and Go Test in Children with Cerebral Palsy. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2016, 28, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Zschorlich, V.R.; Hillebrecht, M.; Tanjour, T.; Qi, F.; Behrendt, F.; Kirschstein, T.; Köhling, R. Repetitive Peripheral Magnetic Nerve Stimulation (rPMS) as Adjuvant Therapy Reduces Skeletal Muscle Reflex Activity. Front. Neurol. 2019, 10, 930. [Google Scholar] [CrossRef]
- Zschorlich, V.R.; Qi, F.; Schorer, J.; Büsch, D. Sensory Stimulation of the Triceps Surae Muscle Complex Modulates Spinal Reflex Responses-A Comparison between Tapotement Massage and Repetitive Peripheral Magnetic Stimulation (rPMS). Brain Sci. 2024, 14, 119. [Google Scholar] [CrossRef]
- Espí-López, G.V.; López-Martínez, S.; Inglés, M.; Serra-Añó, P.; Aguilar-Rodríguez, M. Effect of Manual Therapy versus Proprioceptive Neuromuscular Facilitation in Dynamic Balance, Mobility and Flexibility in Field Hockey Players. A Randomized Controlled Trial. Phys. Ther. Sport 2018, 32, 173–179. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Chou, L.-W.; Hsieh, Y.-L. Proprioceptive Neuromuscular Facilitation-Based Physical Therapy on the Improvement of Balance and Gait in Patients with Chronic Stroke: A Systematic Review and Meta-Analysis. Life Basel Switz. 2022, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Fosdahl, M.A.; Jahnsen, R.; Kvalheim, K.; Holm, I. Effect of a Combined Stretching and Strength Training Program on Gait Function in Children with Cerebral Palsy, GMFCS Level I & II: A Randomized Controlled Trial. Med. Kaunas Lith. 2019, 55, 250. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Ács, P.; Baumann, P.; Borbély, G.; Áfra, G.; Reichardt-Varga, E.; Sántha, G.; Tollár, J. Comparative Effectiveness of 4 Exercise Interventions Followed by 2 Years of Exercise Maintenance in Multiple Sclerosis: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Gillett, J.G.; Lichtwark, G.A.; Boyd, R.N.; Barber, L.A. Functional Capacity in Adults with Cerebral Palsy: Lower Limb Muscle Strength Matters. Arch. Phys. Med. Rehabil. 2018, 99, 900–906.e1. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Q.; Ma, T.-T.; Liang, Y.-H.; Guo, R.-R.; Li, X.-S.; Liu, Q.-J.; Feng, T.-Y. Effect of Repetitive Transcranial Magnetic Stimulation-Assisted Training on Lower Limb Motor Function in Children with Hemiplegic Cerebral Palsy. BMC Pediatr. 2024, 24, 136. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Namara, M.M.; Paton, M.C.; Popat, H.; et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 3. [Google Scholar] [CrossRef]
- Joy, M.T.; Carmichael, S.T. Encouraging an Excitable Brain State: Mechanisms of Brain Repair in Stroke. Nat. Rev. Neurosci. 2021, 22, 38–53. [Google Scholar] [CrossRef] [PubMed]
PMS + PT (N = 15) | PT (N = 15) | CON (N = 15) | p-Value | |
---|---|---|---|---|
Gender (B/G) | 9/6 | 7/8 | 11/4 | 0.388 |
Age (years) | 13.6 ± 2.8 | 11.9 ± 3.1 | 12.6 ± 2.6 | 0.280 |
Weight (kg) | 44.4 ±17.1 | 35.5 ± 12.0 | 40.2 ± 15.2 | 0.271 |
Height (cm) | 143.8 ± 17.9 | 138.0 ± 15.3 | 145.1 ± 14.0 | 0.432 |
BMI (kg/m2) | 21.7 ± 9.5 | 18.3 ± 4.2 | 18.4 ± 4.1 | 0.268 |
GMFCS (I/II/III) * | 6/2/7 | 6/5/4 | 11/1/3 | 0.160 |
TUG (s) | 14.36 (8) | 19.05 (65) | 11.1 (7) | 0.047 * |
USI | PMS + PT (N = 15) | PT (N = 15) | CON (N = 15) | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post 8 Weeks | p | Pre | Post 8 Weeks | p | Pre | Post 8 Weeks | p | |
VL MT (cm) | |||||||||
RT. | 1.80 ± 0.35 | 1.83 ± 0.37 | 0.378 | 1.68 ± 0.29 | 1.65 ± 0.29 | 0.353 | 1.86 ± 0.39 | 1.86 ± 0.41 | 0.961 |
LT. | 1.68 ± 0.33 | 1.74 ± 0.29 | 0.049 * | 1.69 ± 0.22 | 1.75 ± 0.25 | 0.037 * | 1.68 ± 0.45 | 1.72 ± 0.47 | 0.193 |
MG MT (cm) | |||||||||
RT. | 1.17 ± 0.29 | 1.22 ± 0.26 | 0.055 | 1.01 ± 0.33 | 1.06 ± 0.32 | 0.055 | 1.34 ± 0.18 | 1.33 ± 0.21 | 0.542 |
LT. | 1.16 ± 0.23 | 1.23 ± 0.25 | 0.024 * | 1.03 ± 0.31 | 1.05 ± 0.29 | 0.468 | 1.29 ± 0.31 | 1.29 ± 0.32 | 0.884 |
VL EI (A.U.) | |||||||||
RT. | 115.9 ± 23.5 | 121.1 ± 23.6 | 0.093 | 117.6 ± 16.98 | 117.15 ± 17.27 | 0.896 | 113.7 ± 25.08 | 116.1 ± 28.79 | 0.428 |
LT. | 123.2 ± 30.2 | 124.6 ± 32.7 | 0.529 | 116.3 ±12.9 | 116.2 ± 15.1 | 0.955 | 112.9 ± 15.3 | 116.5 ± 17.6 | 0.177 |
MG EI (A.U.) | |||||||||
RT. | 113.4 ± 15.9 | 119.1 ± 21.1 | 0.073 | 119.0 ± 11.1 | 118.3 ± 23.3 | 0.797 | 115.5 ± 20.4 | 120.5 ± 29.6 | 0.115 |
LT. | 110.3 ± 19.5 | 113.2 ± 15.3 | 0.369 | 120.1 ± 14.3 | 124.7 ± 22.6 | 0.142 | 117.5 ± 22.5 | 118.8 ± 27.4 | 0.671 |
VL FL (cm) | |||||||||
RT. | 6.71 ± 1.44 | 6.72 ± 1.23 | 0.162 | 6.44 ± 1.38 | 6.43 ± 1.20 | 0.137 | 7.74 ± 1.28 | 7.72 ± 1.05 | 0.369 |
LT. | 6.24 ± 1.43 | 5.91 ± 1.28 | 0.831 | 6.62 ± 1.49 | 6.75 ± 1.60 | 0.569 | 6.66 ± 1.37 | 6.72 ± 0.99 | 0.876 |
MG FL (cm) | |||||||||
RT. | 4.12 ± 1.51 | 4.32 ± 1.43 | 0.055 | 3.93 ± 1.14 | 4.03 ± 1.16 | 0.315 | 4.25 ± 0.95 | 4.23 ± 0.98 | 0.873 |
LT. | 3.71 ± 0.84 | 3.74 ± 1.33 | 0.787 | 4.05 ± 1.17 | 4.07 ± 1.25 | 0.874 | 3.55 ± 1.25 | 3.59 ± 1.25 | 0.713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klarod, K.; Sukkho, O.; Kiatkulanusorn, S.; Werasirirat, P.; Wutthithanaphokhin, C.; Satkunskienė, D.; Lueang-On, S.; Muanjai, P.; Luangpon, N. The Effect of Peripheral Magnetic Stimulation on Functional Mobility and Morphology in Cerebral Palsy with Spastic Diplegia: A Randomized Controlled Trial. Life 2025, 15, 416. https://doi.org/10.3390/life15030416
Klarod K, Sukkho O, Kiatkulanusorn S, Werasirirat P, Wutthithanaphokhin C, Satkunskienė D, Lueang-On S, Muanjai P, Luangpon N. The Effect of Peripheral Magnetic Stimulation on Functional Mobility and Morphology in Cerebral Palsy with Spastic Diplegia: A Randomized Controlled Trial. Life. 2025; 15(3):416. https://doi.org/10.3390/life15030416
Chicago/Turabian StyleKlarod, Kultida, Oranat Sukkho, Sirirat Kiatkulanusorn, Phurichaya Werasirirat, Chananwan Wutthithanaphokhin, Danguole Satkunskienė, Siraya Lueang-On, Pornpimol Muanjai, and Nongnuch Luangpon. 2025. "The Effect of Peripheral Magnetic Stimulation on Functional Mobility and Morphology in Cerebral Palsy with Spastic Diplegia: A Randomized Controlled Trial" Life 15, no. 3: 416. https://doi.org/10.3390/life15030416
APA StyleKlarod, K., Sukkho, O., Kiatkulanusorn, S., Werasirirat, P., Wutthithanaphokhin, C., Satkunskienė, D., Lueang-On, S., Muanjai, P., & Luangpon, N. (2025). The Effect of Peripheral Magnetic Stimulation on Functional Mobility and Morphology in Cerebral Palsy with Spastic Diplegia: A Randomized Controlled Trial. Life, 15(3), 416. https://doi.org/10.3390/life15030416