Relationship Between 8-iso-prostaglandin-F2α and Predicted 10-Year Cardiovascular Risk in Hypertensive Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- −
- Aged <40 and >75 years old, to align with the application range of Fr-S and ASCVD-S;
- −
- −
- Renal replacement therapy (transplanted or dialysis patients);
- −
- Pharmacological treatment for cardiac rhythm or conduction abnormalities, in order to minimize potential confounders;
- −
- Use of nonsteroidal or steroidal anti-inflammatory medications within 4 weeks before the start of the study.
- −
- History of cerebrovascular disease, coronary heart disease, or symptomatic peripheral arterial disease;
- −
- Hospitalization for CV cause in the previous 6 months;
- −
- Major non-cardiovascular diseases (history of liver cirrhosis, chronic obstructive lung disease, or neoplasms).
2.2. Clinical and Laboratory Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrow, J.D.; Hill, K.E.; Burk, R.F.; Nammour, T.M.; Badr, K.F.; Roberts, L.J. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 1990, 87, 9383–9387. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. Fatty acid oxidation and isoprostanes: Oxidative strain and oxidative stress. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 219–225. [Google Scholar] [CrossRef]
- Cottone, S.; Mulè, G.; Nardi, E.; Vadalà, A.; Guarneri, M.; Briolotta, C.; Arsena, R.; Palermo, A.; Riccobene, R.; Cerasola, G. Relation of C-reactive protein to oxidative stress and to endothelial activation in essential hypertension. Am. J. Hypertens. 2006, 19, 313–318. [Google Scholar] [CrossRef]
- Minuz, P.; Patrignani, P.; Gaino, S.; Degan, M.; Menapace, L.; Tommasoli, R.; Seta, F.; Capone, M.L.; Tacconelli, S.; Palatresi, S.; et al. Increased Oxidative Stress and Platelet Activation in Patients With Hypertension and Renovascular Disease. Circulation 2002, 106, 2800–2805. [Google Scholar] [CrossRef]
- Basu, S. Bioactive eicosanoids: Role of prostaglandin F2α and F2-isoprostanes in inflammation and oxidative stress related pathology. Mol. Cells 2010, 30, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. F2-Isoprostanes in Human Health and Diseases: From Molecular Mechanisms to Clinical Implications. Antioxid. Redox Signal. 2008, 10, 1405–1434. [Google Scholar] [CrossRef]
- Godreau, A.; Lee, K.; Klein, B.; Shankar, A.; Tsai, M.; Klein, R. Association of oxidative stress with mortality: The Beaver Dam Eye Study. Oxid. Antioxid. Med. Sci. 2012, 1, 161. [Google Scholar] [CrossRef]
- Xuan, Y.; Gào, X.; Holleczek, B.; Brenner, H.; Schöttker, B. Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: Results from a large cohort study. Int. J. Cardiol. 2018, 273, 223–229. [Google Scholar] [CrossRef]
- Zhang, Z.-J. Systematic review on the association between F2-isoprostanes and cardiovascular disease. Ann. Clin. Biochem. 2013, 50, 108–114. [Google Scholar] [CrossRef]
- Patrono, C.; FitzGerald, G.A. Isoprostanes: Potential Markers of Oxidant Stress in Atherothrombotic Disease. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 2309–2315. [Google Scholar] [CrossRef]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef]
- Shokr, H.; Dias, I.H.K.; Gherghel, D. Microvascular function and oxidative stress in adult individuals with early onset of cardiovascular disease. Sci. Rep. 2020, 10, 4881. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Grundy, S.; Sullivan, L.M.; Wilson, P.; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001, 286, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Damen, J.A.; Pajouheshnia, R.; Heus, P.; Moons, K.G.; Reitsma, J.B.; Scholten, R.J.; Hooft, L.; Debray, T.P. Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: A systematic review and meta-analysis. BMC Med. 2019, 17, 109. [Google Scholar] [CrossRef]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63 Pt B, 2935–2959. [Google Scholar] [CrossRef]
- Gaziano, T.A.; Abrahams-Gessel, S.; Alam, S.; Alam, D.; Ali, M.; Bloomfield, G.; Carrillo-Larco, R.M.; Prabhakaran, D.; Gutierrez, L.; Irazola, V.; et al. Comparison of Nonblood-Based and Blood-Based Total CV Risk Scores in Global Populations. Glob. Heart 2016, 11, 37. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Ruef, J.; März, W.; Winkelmann, B.R. Markers for endothelial dysfunction, but not markers for oxidative stress correlate with classical risk factors and the severity of coronary artery disease. Scand. Cardiovasc. J. 2006, 40, 274–279. [Google Scholar] [CrossRef]
- Geraci, G.; Mulè, G.; Paladino, G.; Zammuto, M.M.; Castiglia, A.; Scaduto, E.; Zotta, F.; Geraci, C.; Granata, A.; Mansueto, P.; et al. Relationship between kidney findings and systemic vascular damage in elderly hypertensive patients without overt cardiovascular disease. J. Clin. Hypertens. 2017, 19, 1339–1347. [Google Scholar] [CrossRef]
- Geraci, G.; Mule, G.; Costanza, G.; Mogavero, M.; Geraci, C.; Cottone, S. Relationship Between Carotid Atherosclerosis and Pulse Pressure with Renal Hemodynamics in Hypertensive Patients. Am. J. Hypertens. 2016, 29, 519–527. [Google Scholar] [CrossRef]
- Villines, T.C.; Taylor, A.J. Multi-ethnic study of atherosclerosis arterial age versus framingham 10-year or lifetime cardiovascular risk. Am. J. Cardiol. 2012, 110, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Cottone, S.; Mule, G.; Guarneri, M.; Palermo, A.; Lorito, M.C.; Riccobene, R.; Arsena, R.; Vaccaro, F.; Vadala, A.; Nardi, E.; et al. Endothelin-1 and F2-isoprostane relate to and predict renal dysfunction in hypertensive patients. Nephrol. Dial. Transplant. 2008, 24, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Minuz, P.; Patrignani, P.; Gaino, S.; Seta, F.; Capone, M.L.; Tacconelli, S.; Degan, M.; Faccini, G.; Fornasiero, A.; Talamini, G.; et al. Determinants of Platelet Activation in Human Essential Hypertension. Hypertension 2004, 43, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Keaney, J.J.F.; Larson, M.G.; Vasan, R.S.; Wilson, P.W.; Lipinska, I.; Corey, D.; Massaro, J.M.; Sutherland, P.; Vita, J.A.; Benjamin, E.J. Obesity and Systemic Oxidative Stress. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 434–439. [Google Scholar] [CrossRef]
- Roest, M.; Voorbij, H.A.M.; van der Schouw, Y.T.; Peeters, P.H.M.; Teerlink, T.; Scheffer, P.G. High levels of urinary F2-isoprostanes predict cardiovascular mortality in postmenopausal women. J. Clin. Lipidol. 2008, 2, 298–303. [Google Scholar] [CrossRef]
- Schwedhelm, E.; Bartling, A.; Lenzen, H.; Tsikas, D.; Maas, R.; Brümmer, J.; Gutzki, F.-M.; Berger, J.; Frölich, J.C.; Böger, R.H. Urinary 8-iso-Prostaglandin F2α as a Risk Marker in Patients With Coronary Heart Disease. Circulation 2004, 109, 843–848. [Google Scholar] [CrossRef]
- Ravarotto, V.; Simioni, F.; Pagnin, E.; Davis, P.A.; Calò, L.A. Oxidative stress—Chronic kidney disease—Cardiovascular disease: A vicious circle. Life Sci. 2018, 210, 125–131. [Google Scholar] [CrossRef]
- Kaysen, G.A.; Eiserich, J.P. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. JASN 2004, 15, 538–548. [Google Scholar] [CrossRef]
- Morrow, J.D.; Roberts, L.J. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol. 1999, 300, 3–12. [Google Scholar] [CrossRef]
- Geraci, G.; Mulè, G.; Mogavero, M.; Geraci, C.; D’Ignoti, D.; Guglielmo, C.; Cottone, S. Renal haemodynamics and severity of carotid atherosclerosis in hypertensive patients with and without impaired renal function. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 160–166. [Google Scholar] [CrossRef]
- Geraci, G.; Mulè, G.; Morreale, M.; Cusumano, C.; Castiglia, A.; Gervasi, F.; D’Ignoto, F.; Mogavero, M.; Geraci, C.; Cottone, S. Association between uric acid and renal function in hypertensive patients: Which role for systemic vascular involvement? J. Am. Soc. Hypertens. 2016, 10, 559–569.e3. [Google Scholar] [CrossRef] [PubMed]
- Mulè, G.; Castiglia, A.; Cusumano, C.; Scaduto, E.; Geraci, G.; Altieri, D.; Di Natale, E.; Cacciatore, O.; Cerasola, G.; Cottone, S. Subclinical Kidney Damage in Hypertensive Patients: A Renal Window Opened on the Cardiovascular System. Focus Microalbuminuria 2017, 956, 279–306. [Google Scholar] [CrossRef]
- Mathur, S.; Devaraj, S.; Jialal, I. Accelerated atherosclerosis, dyslipidemia, and oxidative stress in end-stage renal disease. Curr. Opin. Nephrol. Hypertens. 2002, 11, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Campean, V.; Neureiter, D.; Varga, I.; Runk, F.; Reiman, A.; Garlichs, C.; Achenbach, S.; Nonnast-Daniel, B.; Amann, K. Atherosclerosis and Vascular Calcification in Chronic Renal Failure. Kidney Blood Press. Res. 2005, 28, 280–289. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Bakris, G.L. Renal function and target organ damage in hypertension. Eur. Heart J. 2011, 32, 1599–1604. [Google Scholar] [CrossRef]
- Nardi, E.; Mulè, G.; Nardi, C.; Geraci, G.; Giammanco, A.; Bentivegna, R.; Averna, M. Is echocardiography mandatory for patients with chronic kidney disease? Intern. Emerg. Med. 2019, 14, 923–929. [Google Scholar] [CrossRef]
- Namikoshi, T.; Fujimoto, S.; Yorimitsu, D.; Ihoriya, C.; Fujimoto, Y.; Komai, N.; Sasaki, T.; Kashihara, N. Relationship between vascular function indexes, renal arteriolosclerosis, and renal clinical outcomes in chronic kidney disease. Nephrology 2015, 20, 585–590. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y.; Liu, B.; Jia, X.; Wang, R.; Lu, Q. Associations of plasma 8-iso-prostaglandin F2αlevels with fasting blood glucose (FBG) and intra-abdominal fat (IAF) area in various Glycometabolism populations. BMC Endocr. Disord. 2021, 21, 215. [Google Scholar] [CrossRef]
- Liu, A.; Wu, Q.; Guo, J.; Ares, I.; Rodríguez, J.L.; Martínez-Larrañaga, M.R.; Yuan, Z.; Anadón, A.; Wang, X.; Martínez, M.A. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther. 2019, 195, 54–84. [Google Scholar] [CrossRef]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Li, C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
Variable * | Overall Population (n = 432) | eGFR ≥ 60 (n = 279) | eGFR < 60 (n = 153) | p-Value ^ |
---|---|---|---|---|
Age (years) | 60 ± 10 | 57 ± 10 | 65 ± 8 | <0.001 |
Male sex, n (%) | 255 (59) | 173 (64.0) | 82 (53.6) | NS |
Smoking habit, n (%) | 109 (25.3) | 59 (21.15) | 50 (32.8) | NS |
Diabetes, n (%) | 111 (25.7) | 63 (22.6) | 48 (31.4) | NS |
Antihypertensive therapy, n (%) | 415 (96.1) | 270 (96.8) | 145 (94.8) | NS |
Clinic systolic BP (mmHg) | 142 ± 21 | 143 ± 21 | 140 ± 20 | NS |
Clinic diastolic BP (mmHg) | 84 ± 13 | 86±14 | 80 ± 11 | <0.001 |
Clinic mean BP (mmHg) | 103 ± 14 | 105 ± 15 | 100 ± 12 | 0.001 |
Clinic pulse pressure (mmHg) | 58 ± 16 | 57 ± 15 | 60 ± 18 | NS |
Clinic heart rate (bpm) | 73 ± 10 | 73 ± 10 | 72 ± 11 | NS |
Biochemical parameters | ||||
Serum glucose (mg/dL) | 110.1 ± 36.1 | 108.6 ± 31.7 | 112.8 ± 42.9 | NS |
Serum uric acid (mg/dL) | 6.43 ± 1.65 | 6.39 ± 1.70 | 6.48 ± 1.59 | <0.001 |
Serum total cholesterol (mg/dL) | 191.5 ± 43.6 | 193.6 ± 40.3 | 187.6 ± 48.9 | NS |
LDL-c (mg/dL) | 119.06 ± 38.80 | 121.69 ± 37.65 | 114.27 ± 40.32 | NS |
HDL-c (mg/dL) | 46.11 ± 12.44 | 47.22 ± 11.79 | 44.10 ± 13.35 | <0.05 |
Serum triglycerides (mg/dL) | 118 (86–161) | 105 (81–152) | 136 (104–177) | <0.001 |
Serum creatinine (mg/dL) | 1.43 ± 1.14 | 0.92 ± 0.16 | 2.36 ± 1.53 | <0.001 |
eGFR (ml/min/1.73 m2) | 65.9 ± 27.5 | 83.5 ± 12.8 | 33.8 ± 16.1 | <0.001 |
Serum sodium (mEq/L) | 139 ± 3 | 140 ± 3 | 139 ± 3 | NS |
Serum potassium (mEq/L) | 4.35 ± 0.40 | 4.33 ± 0.38 | 4.37 ± 0.43 | NS |
Endothelial disfunctions and cardiovascular risk | ||||
8-iso-PGF2α (pg/mL) | 292.6 ± 125.7 | 247.2 ± 104.7 | 375.4 ± 118.7 | <0.001 |
CRP (mg/dL) | 2.40 (1.60–3.30) | 2.00 (1.39–2.70) | 3.17 (2.40–3.80) | <0.001 |
Framingham Risk Score (%) | 7.46 (4.17–14.06) | 6.49 (3.60–11.76) | 9.44 (6.00–17.83) | 0.001 |
Framingham Risk Score < 10%, n (%) | 272 (63.0) | 193 (69.2) | 79 (51.6) | <0.001 |
Framingham Risk Score ≥ 20%, n (%) | 61 (14.1) | 36 (12.9) | 25 (16.3) | NS |
ASCVD Risk Score (%) | 10.92 (4.92–21.43) | 8.25 (4.24–17.28) | 15.83 (9.59–28.27) | <0.001 |
ASCVD Risk Score < 7.5%, n (%) | 157 (36.3) | 129 (46.2) | 28 (18.3) | <0.001 |
ASCVD Risk Score ≥ 15%, n (%) | 167 (38.7) | 87 (31.2) | 80 (52.3) | <0.001 |
8-Iso-PGF2α | Framingham Risk Score | ASCVD Risk Score | |
---|---|---|---|
r | r | r | |
Age (years) | 0.383 *** | 0.778 *** | 0.859 *** |
Serum glucose (mg/dL) | 0.202 *** | 0.377 *** | 0.345 *** |
Serum uric acid (mg/dL) | −0.051 NS | 0.234 *** | 0.273 *** |
Serum total cholesterol (mg/dL) | −0.131 ** | −0.301 *** | −0.160 *** |
LDL-c (mg/dL) | −0.165 *** | −0.090 * | −0.156 ** |
HDL-c (mg/dL) | −0.027 NS | −0.288 *** | −0.256 *** |
Serum triglycerides (mg/dL) | 0.090 NS | 0.088 NS | 0.147 ** |
Serum creatinine (mg/dL) | 0.466 *** | 0.127 ** | 0.177 *** |
eGFR (mL/min/1.73 m2) | −0.520 *** | −0.254 *** | −0.338 *** |
Serum sodium (mEq/L) | −0.024 NS | −0.085 NS | −0.009 NS |
Serum potassium (mEq/L) | 0.086 NS | 0.088 NS | 0.084 NS |
Systolic BP (mmHg) | 0.188 *** | 0.236 *** | 0.156 *** |
Diastolic BP (mmHg) | −0.015 NS | −0.163 *** | −0.247 *** |
Mean BP (mmHg) | 0.083 NS | 0.014 NS | −0.076 NS |
Pulse Pressure (mmHg) | 0.250 *** | 0.430 *** | 0.395 *** |
Heart Rate (bpm) | −0.046 NS | −0.074 NS | −0.094 * |
CRP (mg/dL) | 0.717 *** | 0.407 *** | 0.404 *** |
[A] Outcome Variable: Framingham Risk Score | Regression Coefficients | |||
Standardized | ||||
Β | β | t | p-Value | |
Model (R2 = 0.938) | ||||
Age | 0.024 | 0.683 | 45.810 | <0.001 |
Diabetes | 0.274 | 0.326 | 24.988 | <0.001 |
Systolic BP | 0.005 | 0.277 | 21.928 | <0.001 |
Sex (male) | 0.178 | 0.240 | 18.354 | <0.001 |
Smoking habit | 0.166 | 0.165 | 12.780 | <0.001 |
HDL cholesterol | 0.002 | 0.079 | 5.844 | <0.001 |
Serum total cholesterol | 0.001 | −0.059 | −4.357 | 0.001 |
eGFR | <0.001 | 0.066 | 4.128 | 0.001 |
8-iso-PGF2α | <0.001 | 0.052 | 3.236 | 0.001 |
Constant | −1.582 | - | −27.712 | <0.001 |
[B] Outcome Variable: ASCVD Risk Score | Regression Coefficients | |||
Standardized | ||||
Β | β | t | p-Value | |
Model (R2 = 0.969) | ||||
Age | 0.038 | 0.891 | 82.357 | <0.001 |
Diabetes | 0.245 | 0.244 | 26.431 | <0.001 |
Sex (male) | 0.207 | 0.232 | 25.019 | <0.001 |
Systolic BP | 0.005 | 0.216 | 24.131 | <0.001 |
Serum total cholesterol | 0.002 | 0.177 | 18.455 | <0.001 |
HDL cholesterol | −0.006 | −0.168 | −17.513 | <0.001 |
Smoking habit | 0.072 | 0.060 | 6.562 | <0.001 |
Antihypertensive therapy | 0.129 | 0.057 | 6.482 | <0.001 |
eGFR | <0.001 | 0.036 | 3.150 | 0.002 |
8-iso-PGF2α | <0.001 | 0.026 | 2.285 | 0.023 |
Constant | −2.384 | - | −43.679 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geraci, G.; Sorce, A.; Zanoli, L.; Cuttone, G.; Calabrese, V.; Pallotti, F.; Paternò, V.; Ferrara, P.; Dominguez, L.J.; Polosa, R.; et al. Relationship Between 8-iso-prostaglandin-F2α and Predicted 10-Year Cardiovascular Risk in Hypertensive Patients. Life 2025, 15, 401. https://doi.org/10.3390/life15030401
Geraci G, Sorce A, Zanoli L, Cuttone G, Calabrese V, Pallotti F, Paternò V, Ferrara P, Dominguez LJ, Polosa R, et al. Relationship Between 8-iso-prostaglandin-F2α and Predicted 10-Year Cardiovascular Risk in Hypertensive Patients. Life. 2025; 15(3):401. https://doi.org/10.3390/life15030401
Chicago/Turabian StyleGeraci, Giulio, Alessandra Sorce, Luca Zanoli, Giuseppe Cuttone, Vincenzo Calabrese, Francesco Pallotti, Valentina Paternò, Pietro Ferrara, Ligia J. Dominguez, Riccardo Polosa, and et al. 2025. "Relationship Between 8-iso-prostaglandin-F2α and Predicted 10-Year Cardiovascular Risk in Hypertensive Patients" Life 15, no. 3: 401. https://doi.org/10.3390/life15030401
APA StyleGeraci, G., Sorce, A., Zanoli, L., Cuttone, G., Calabrese, V., Pallotti, F., Paternò, V., Ferrara, P., Dominguez, L. J., Polosa, R., George, J., Mulè, G., & Carollo, C. (2025). Relationship Between 8-iso-prostaglandin-F2α and Predicted 10-Year Cardiovascular Risk in Hypertensive Patients. Life, 15(3), 401. https://doi.org/10.3390/life15030401