Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin
Abstract
:1. Introduction
2. Structure of the Inhibited Smooth Muscle Myosin
3. Regulatory Role of the Alternative Regions in Insect Striated Muscle Myosin
- Exon 3-encoded region
- Exon 7-encoded region
- Exon 9-encoded region
- Exon 11-encoded region
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Myosin-2 | Class II myosin |
MHC | Myosin heavy chain |
F-actin | Actin filament |
SmM | Smooth muscle myosin |
ELC | Essential light chain |
RLC | Regulatory light chain |
IHM | Interacting heads motif |
BH | “Blocked” head |
FH | “Free” head |
MLCK | Myosin light chain kinase |
EMB | Embryonic muscle |
IFM | Indirect flight muscle |
Gg | Gallus gallus |
Dm | Drosophila melanogaster |
References
- Heissler, S.M.; Sellers, J.R. Kinetic adaptations of myosins for their diverse cellular functions. Traffic 2016, 17, 839–859. [Google Scholar] [CrossRef] [PubMed]
- Geeves, M.A.; Holmes, K.C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 1999, 68, 687–728. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Sousa, S. Non-muscle myosin 2A (NM2A): Structure, regulation and function. Cells 2020, 9, 1590. [Google Scholar] [CrossRef] [PubMed]
- Sulbarán, G.; Alamo, L.; Pinto, A.; Márquez, G.; Méndez, F.; Padrón, R.; Craig, R. An invertebrate smooth muscle with striated muscle myosin filaments. Proc. Natl. Acad. Sci. USA 2015, 112, E5660–E5668. [Google Scholar] [CrossRef] [PubMed]
- Sellers, J.R. Myosins: A diverse superfamily. Biochim. Biophys. Acta 2000, 1496, 3–22. [Google Scholar] [CrossRef]
- Burgess, S.A.; Yu, S.; Walker, M.L.; Hawkins, R.J.; Chalovich, J.M.; Knight, P.J. Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state. J. Mol. Biol. 2007, 372, 1165–1178. [Google Scholar] [CrossRef]
- Chang, A.N.; Mahajan, P.; Knapp, S.; Barton, H.; Sweeney, H.L.; Kamm, K.E.; Stull, J.T. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities. Proc. Natl. Acad. Sci. USA 2016, 113, E3824–E3833. [Google Scholar] [CrossRef]
- Zoghbi, M.E.; Woodhead, J.L.; Moss, R.L.; Craig, R. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc. Natl. Acad. Sci. USA 2008, 105, 2386–2390. [Google Scholar] [CrossRef]
- Woodhead, J.L.; Zhao, F.Q.; Craig, R.; Egelman, E.H.; Alamo, L.; Padrón, R. Atomic model of a myosin filament in the relaxed state. Nature 2005, 436, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Nguyen, V.; Campbell, K.S.; Padrón, R.; Craig, R. Cryo-EM structure of the human cardiac myosin filament. Nature 2023, 623, 853–862. [Google Scholar] [CrossRef]
- Grinzato, A.; Auguin, D.; Kikuti, C.; Nandwani, N.; Moussaoui, D.; Pathak, D.; Kandiah, E.; Ruppel, K.M.; Spudich, J.A.; Houdusse, A.; et al. Cryo-EM structure of the folded-back state of human β-cardiac myosin. Nat. Commun. 2023, 14, 3166. [Google Scholar] [CrossRef]
- Alamo, L.; Qi, D.; Wriggers, W.; Pinto, A.; Zhu, J.; Bilbao, A.; Gillilan, R.E.; Hu, S.; Padrón, R. Conserved intramolecular interactions maintain myosin interacting-heads motifs explaining Tarantula muscle super-relaxed state structural basis. J. Mol. Biol. 2016, 428, 1142–1164. [Google Scholar] [CrossRef] [PubMed]
- Scarff, C.A.; Carrington, G.; Casas-Mao, D.; Chalovich, J.M.; Knight, P.J.; Ranson, N.A.; Peckham, M. Structure of the shutdown state of myosin-2. Nature 2020, 588, 515–520. [Google Scholar] [CrossRef]
- Jung, H.S.; Burgess, S.A.; Billington, N.; Colegrave, M.; Patel, H.; Chalovich, J.M.; Chantler, P.D.; Knight, P.J. Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 million years of independent evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 6022–6026. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Sulbarán, G.; Yang, S.; Mun, J.Y.; Alamo, L.; Pinto, A.; Sato, O.; Ikebe, M.; Liu, X.; Korn, E.D.; et al. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc. Natl. Acad. Sci. USA 2018, 115, E1991–E2000. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Komatsu, S.; Ikebe, M.; Craig, R. Head-head and head-tail interaction: A general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 2008, 19, 3234–3242. [Google Scholar] [CrossRef]
- Odronitz, F.; Kollmar, M. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of ’partially’ processed pseudogene. BMC Mol. Biol. 2008, 9, 21. [Google Scholar] [CrossRef]
- Swank, D.M.; Bartoo, M.L.; Knowles, A.F.; Iliffe, C.; Bernstein, S.I.; Molloy, J.E.; Sparrow, J.C. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J. Biol. Chem. 2001, 276, 15117–15124. [Google Scholar] [CrossRef]
- Li, J.; Lu, Z.; He, J.; Chen, Q.; Wang, X.; Kang, L.; Li, X.D. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity. Insect Mol. Biol. 2016, 25, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bernstein, S.I. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech. Dev. 2001, 101, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Swank, D.M.; Knowles, A.F.; Kronert, W.A.; Suggs, J.A.; Morrill, G.E.; Nikkhoy, M.; Manipon, G.G.; Bernstein, S.I. Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sliding velocity. J. Biol. Chem. 2003, 278, 17475–17482. [Google Scholar] [CrossRef] [PubMed]
- Kronert, W.A.; Dambacher, C.M.; Knowles, A.F.; Swank, D.M.; Bernstein, S.I. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function. J. Mol. Biol. 2008, 379, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Ikebe, M. Regulation of the function of mammalian myosin and its conformational change. Biochem. Biophys. Res. Commun. 2008, 369, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Onishi, H.; Takahashi, K.; Watanabe, S. Structure and function of chicken gizzard myosin. J. Biochem. 1978, 84, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Wendt, T.; Taylor, D.; Trybus, K.M.; Taylor, K. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc. Natl. Acad. Sci. USA 2001, 98, 4361–4366. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wendt, T.; Taylor, D.; Taylor, K. Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction. J. Mol. Biol. 2003, 329, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.A.; Cross, K.E.; Sobieszek, A. ATP-linked monomer-polymer equilibrium of smooth muscle myosin: The free folded monomer traps ADP.Pi. Embo J. 1986, 5, 2637–2641. [Google Scholar] [CrossRef]
- Yang, S.; Lee, K.H.; Woodhead, J.L.; Sato, O.; Ikebe, M.; Craig, R. The central role of the tail in switching off 10S myosin II activity. J. Gen. Physiol. 2019, 151, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Kiboku, T.; Katoh, T.; Nakamura, A.; Kitamura, A.; Kinjo, M.; Murakami, Y.; Takahashi, M. Nonmuscle myosin II folds into a 10S form via two portions of tail for dynamic subcellular localization. Genes Cells 2013, 18, 90–109. [Google Scholar] [CrossRef]
- Milton, D.L.; Schneck, A.N.; Ziech, D.A.; Ba, M.; Facemyer, K.C.; Halayko, A.J.; Baker, J.E.; Gerthoffer, W.T.; Cremo, C.R. Direct evidence for functional smooth muscle myosin II in the 10S self-inhibited monomeric conformation in airway smooth muscle cells. Proc. Natl. Acad. Sci. USA 2011, 108, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Heissler, S.M.; Arora, A.S.; Billington, N.; Sellers, J.R.; Chinthalapudi, K. Cryo-EM structure of the autoinhibited state of myosin-2. Sci. Adv. 2021, 7, eabk3273. [Google Scholar] [CrossRef]
- Yang, S.; Tiwari, P.; Lee, K.H.; Sato, O.; Ikebe, M.; Padron, R.; Craig, R. Cryo-EM structure of the inhibited (10S) form of myosin II. Nature 2020, 588, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Trybus, K.M.; Lowey, S. Mechanism of smooth muscle myosin phosphorylation. J. Biol. Chem. 1985, 260, 15988–15995. [Google Scholar] [CrossRef] [PubMed]
- Persechini, A.; Hartshorne, D.J. Phosphorylation of smooth muscle myosin: Evidence for cooperativity between the myosin heads. Science 1981, 213, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Alamo, L.; Pinto, A.; Sulbarán, G.; Mavárez, J.; Padrón, R. Lessons from a tarantula: New insights into myosin interacting-heads motif evolution and its implications on disease. Biophys. Rev. 2018, 10, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Alamo, L.; Koubassova, N.; Pinto, A.; Gillilan, R.; Tsaturyan, A.; Padrón, R. Lessons from a tarantula: New insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys. Rev. 2017, 9, 461–480. [Google Scholar] [CrossRef]
- Pinto, A.; Sánchez, F.; Alamo, L.; Padrón, R. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. J. Struct. Biol. 2012, 180, 469–478. [Google Scholar] [CrossRef]
- Hu, Z.; Taylor, D.W.; Reedy, M.K.; Edwards, R.J.; Taylor, K.A. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. Sci. Adv. 2016, 30, e1600058. [Google Scholar] [CrossRef]
- Hess, N.K.; Singer, P.A.; Trinh, K.; Nikkhoy, M.; Bernstein, S.I. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene. Gene Expr. Patterns 2007, 7, 413–422. [Google Scholar] [CrossRef]
- Bernstein, S.I.; Milligan, R.A. Fine tuning a molecular motor: The location of alternative domains in the Drosophila myosin head. J. Mol. Biol. 1997, 271, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.T.; Mermelstein, D.J.; Walker, R.C.; Bernstein, S.I.; Huxford, T. X-ray crystallographic and molecular dynamic analyses of Drosophila melanogaster embryonic muscle myosin define domains responsible for isoform-specific properties. J. Mol. Biol. 2020, 432, 427–447. [Google Scholar] [CrossRef] [PubMed]
- Swank, D.M.; Braddock, J.; Brown, W.; Lesage, H.; Bernstein, S.I.; Maughan, D.W. An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics. Biophys. J. 2006, 90, 2427–2435. [Google Scholar] [CrossRef]
- Miller, B.M.; Bloemink, M.J.; Nyitrai, M.; Bernstein, S.I.; Geeves, M.A. A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites. J. Mol. Biol. 2007, 368, 1051–1066. [Google Scholar] [CrossRef]
- Houdusse, A.; Kalabokis, V.N.; Himmel, D.; Szent-Györgyi, A.G.; Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: A novel conformation of the myosin head. Cell 1999, 97, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ramanath, S.; Kronert, W.A.; Bernstein, S.I.; Maughan, D.W.; Swank, D.M. Alternative versions of the myosin relay domain differentially respond to load to influence Drosophila muscle kinetics. Biophys. J. 2008, 95, 5228–5237. [Google Scholar] [CrossRef] [PubMed]
- Bloemink, M.J.; Dambacher, C.M.; Knowles, A.F.; Melkani, G.C.; Geeves, M.A.; Bernstein, S.I. Alternative exon 9-encoded relay domains affect more than one communication pathway in the Drosophila myosin head. J. Mol. Biol. 2009, 389, 707–721. [Google Scholar] [CrossRef]
- Ramanath, S.; Wang, Q.; Bernstein, S.I.; Swank, D.M. Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance. Biophys. J. 2011, 101, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Kronert, W.A.; Melkani, G.C.; Melkani, A.; Bernstein, S.I. Alternative relay and converter domains tune native muscle myosin isoform function in Drosophila. J. Mol. Biol. 2012, 416, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Kronert, W.A.; Melkani, G.C.; Melkani, A.; Bernstein, S.I. Mapping interactions between myosin relay and converter domains that power muscle function. J. Biol. Chem. 2014, 289, 12779–12790. [Google Scholar] [CrossRef] [PubMed]
- Bloemink, M.J.; Melkani, G.C.; Bernstein, S.I.; Geeves, M.A. The relay/converter interface influences hydrolysis of ATP by skeletal muscle myosin II. J. Biol. Chem. 2016, 291, 1763–1773. [Google Scholar] [CrossRef]
- Littlefield, K.P.; Swank, D.M.; Sanchez, B.M.; Knowles, A.F.; Warshaw, D.M.; Bernstein, S.I. The converter domain modulates kinetic properties of Drosophila myosin. Am. J. Physiol. Cell Physiol. 2003, 284, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hao, J.; Yao, L.L.; Wei, M.; Chen, W.; Yang, Q.; Li, X.D. Insect Sf9 cells are suitable for functional expression of insect, but not vertebrate, striated muscle myosin. Biochem. Biophys. Res. Commun. 2022, 635, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Liu, C.; Zhang, N.; Li, J.; Ni, T.; Qu, M.; Li, X.D. Alternative relay regulates the adenosine triphosphatase activity of Locusta migratoria striated muscle myosin. Insect Sci. 2024, 31, 435–447. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Lu, Y.-N.; Li, X.-d. Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin. Life 2025, 15, 379. https://doi.org/10.3390/life15030379
Sun S, Lu Y-N, Li X-d. Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin. Life. 2025; 15(3):379. https://doi.org/10.3390/life15030379
Chicago/Turabian StyleSun, Shaopeng, Yi-Ning Lu, and Xiang-dong Li. 2025. "Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin" Life 15, no. 3: 379. https://doi.org/10.3390/life15030379
APA StyleSun, S., Lu, Y.-N., & Li, X.-d. (2025). Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin. Life, 15(3), 379. https://doi.org/10.3390/life15030379