Community-Based Exercise Programs Post Spinal Cord Injury Hospitalization: A Pilot Study for a Randomized, Multicenter, Double-Blind Controlled Setting
Abstract
1. Introduction
2. Methods and Materials
2.1. Research Framework
2.2. Participants
2.3. Blinding and Randomization
2.4. Procedure
2.5. Intervention Program
2.6. Measurements
2.6.1. Muscular Strength and Function
2.6.2. Cardiopulmonary Endurance
2.6.3. Functional Capacity
2.6.4. Physical Composition
2.7. Participant Timeline
2.8. Procedures for Data Collection
2.9. Data Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Yang, X.; He, Z.; Li, J.; Li, Y.; Wu, Y.; Manyande, A.; Feng, M.; Xiang, H. Spinal cord injury: Global burden from 1990 to 2019 and projections up to 2030 using Bayesian age-period-cohort analysis. Front. Neurol. 2023, 14, 1304153. [Google Scholar] [CrossRef]
- Kim, H.-K.; Leigh, J.-H.; Choi, Y.; Lee, J.-H.; Bang, M.-S. Spinal cord injury fact sheet in Korea. Ann. Rehabil. Med. 2023, 47, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.E.; Kim, M.; Kim, B.; Lee, H.; Chang, W.H.; Yoo, J.; Shin, D.W. Increased risk of myocardial infarction, heart failure, and atrial fibrillation after spinal cord injury. J. Am. Coll. Cardiol. 2024, 83, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.B.; Cripps, R.A.; Fitzharris, M.; Wing, P.C. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord. 2014, 52, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Shin, H. Etiology and epidemiology of spinal cord injury in Korea. J. Korean Med. Assoc. 2020, 63, 589–595. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Tetreault, L.A.; Wilson, J.R.; Kwon, B.K.; Burns, A.S.; Martin, A.R.; Hawryluk, G.; Harrop, J.S. A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Glob. Spine J. 2017, 7, 84S–94S. [Google Scholar] [CrossRef]
- Furlan, J.C.; Bracken, M.B.; Fehlings, M.G. Is age a key determinant of mortality and neurological outcome after acute traumatic spinal cord injury? Neurobiol. Aging. 2010, 31, 434–446. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sørensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Waring, W. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- Ginis, K.A.; Hicks, A.L.; Latimer, A.E.; Warburton, D.E.R.; Bourne, C.; Ditor, D.S.; Wolfe, D.L. The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord 2011, 49, 1088–1096. [Google Scholar] [CrossRef]
- Nightingale, T.E.; Walhin, J.P.; Thompson, D.; Bilzon, J.L. Biomarkers of cardiometabolic health are associated with body composition characteristics but not physical activity in persons with spinal cord injury. J. Spinal Cord Med. 2019, 42, 328–337. [Google Scholar] [CrossRef]
- Myers, J.; Lee, M.; Kiratli, J. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. Am. J. Phys. Med. Rehabil. 2007, 86, 142–152. [Google Scholar] [CrossRef]
- Ho, C.H.; Wuermser, L.A.; Priebe, M.M.; Chiodo, A.E.; Scelza, W.M.; Kirshblum, S.C. Spinal cord injury medicine. 1. Epidemiology and classification. Arch. Phys. Med. Rehabil. 2007, 88, S49–S54. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Gherle, A.; Nistor-Cseppento, C.D.; Iovanovici, D.C.; Cevei, I.R.; Cevei, M.L.; Vasileva, D.; Stoicanescu, D. Secondary sarcopenia and spinal cord injury: Clinical associations and health outcomes. J. Clin. Med. 2024, 13, 885. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.D.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.M.; Goodman-Gruen, D.; Kritz-Silverstein, D.; Morton, D.J.; Wingard, D.L.; Barrett-Connor, E. Sarcopenia in elderly men and women: The Rancho Bernardo study. Am. J. Prev. Med. 2003, 25, 226–231. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Cournot, M.; Nourhashémi, F.; Reynish, W.; Rivière, D.; Grandjean, H. Sarcopenia, calf circumference, and physical function of elderly women: A cross-sectional study. J. Am. Geriatr. Soc. 2003, 51, 1120–1124. [Google Scholar] [CrossRef]
- Han, M.; Qie, R.; Shi, X.; Yang, Y.; Lu, J.; Hu, F.; Zhao, Y. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: Dose–response meta-analysis of cohort studies. Br. J. Sports Med. 2022, 56, 733–739. [Google Scholar] [CrossRef]
- Stamatakis, E.; Koster, A.; Mork, P.J. Cardiorespiratory fitness and long-term mortality: Targeting the least fit with incidental physical activity. J. Am. Coll. Cardiol. 2018, 72, 996–998. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sone, H. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.A.; Arena, R.; Myers, J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: Data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin. Proc. 2015, 90, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Kampert, J.B.; Barlow, C.E.; Nichaman, M.Z.; Gibbons, L.W.; Paffenbarger Jr, R.S.; Blair, S.N. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999, 282, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Hodgkiss, D.D.; Bhangu, G.S.; Lunny, C.; Jutzeler, C.R.; Chiou, S.Y.; Walter, M.; Nightingale, T.E. Exercise and aerobic capacity in individuals with spinal cord injury: A systematic review with meta-analysis and meta-regression. PLoS Med. 2023, 20, e1004082. [Google Scholar] [CrossRef] [PubMed]
- Chiou, S.Y.; Clarke, E.; Lam, C.; Harvey, T.; Nightingale, T.E. Effects of arm-crank exercise on fitness and health in adults with chronic spinal cord injury: A systematic review. Front. Physiol. 2022, 13, 831372. [Google Scholar] [CrossRef]
- Tsuji, K.; Tsuchiya, Y.; Ueda, H.; Ochi, E. Home-based high-intensity interval training improves cardiorespiratory fitness: A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2023, 15, 166. [Google Scholar] [CrossRef]
- Baehr, L.A.; Kaimal, G.; Hiremath, S.V.; Trost, Z.; Finley, M. Staying active after rehab: Physical activity perspectives with a spinal cord injury beyond functional gains. PLoS ONE 2022, 17, e0265807. [Google Scholar] [CrossRef]
- Ilha, J.; Glinsky, J.V.; Chu, J.; Bye, E.A.; Tweedy, S.; Harvey, L.A. Physical exercise training to increase cardiorespiratory fitness in people with spinal cord injury. Cochrane Database Syst. Rev. 2024, 2024, CD014476. [Google Scholar] [CrossRef]
- Wise, H.; Thomas, J.; Nietert, P.; Brown, D.; Sword, D.; Diehl, N. Home physical activity programs for the promotion of health and wellness in individuals with spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2009, 14, 122–132. [Google Scholar] [CrossRef]
- Schroeder, E.C.; Franke, W.D.; Sharp, R.L.; Lee, D.C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef]
- Palladino, L.; Ru Gaspar Otolo, I.; Berardi, A.; Carlizza, A.; Galeoto, G. Efficacy of aquatic therapy in people with spinal cord injury: A systematic review and meta-analysis. Spinal Cord 2023, 61, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.; Padula, N.; Freitas, T.B.; de Oliveira, J.P.; Torriani-Pasin, C. Physical Exercise for Individuals With Spinal Cord Injury: Systematic Review Based on the International Classification of Functioning, Disability, and Health. J. Sport Rehabil. 2019, 28, 505–516. [Google Scholar] [CrossRef] [PubMed]
- van der Scheer, J.W.; Goosey-Tolfrey, V.L.; Valentino, S.E.; Davis, G.M.; Ho, C.H. Functional electrical stimulation cycling exercise after spinal cord injury: A systematic review of health and fitness-related outcomes. J. Neuroeng. Rehabil. 2021, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.A.; Taylor, K.L.; Tucker, S. Rehabilitation in spinal cord injury: Exercise and testing for cardiorespiratory endurance and musculoskeletal fitness. Diagn. Treat. Spinal Cord Inj. 2022, 2022, 513–524. [Google Scholar] [CrossRef]
- van der Scheer, J.W.; Martin Ginis, K.A.; Ditor, D.S.; Goosey-Tolfrey, V.L.; Hicks, A.L.; West, C.R.; Wolfe, D.L. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review. Neurology 2017, 89, 736–745. [Google Scholar] [CrossRef]
- Sisto, S.A.; Evans, N. Activity and fitness in spinal cord injury: Review and update. Curr. Phys. Med. Rehabil. Rep. 2014, 2, 147–157. [Google Scholar] [CrossRef]
- Hicks, A.L.; Adams, M.M.; Martin Ginis, K.; Giangregorio, L.; Latimer, A.; Phillips, S.M.; McCartney, N. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: Effects on functional walking ability and measures of subjective well-being. Spinal Cord 2005, 43, 291–298. [Google Scholar] [CrossRef]
- Nash, M.S.; van de Ven, I.; van Elk, N.; Johnson, B.M. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch. Phys. Med. Rehabil. 2007, 88, 70–75. [Google Scholar] [CrossRef]
- Bochkezanian, V.; Raymond, J.; De Oliveira, C.Q.; Davis, G.M. Can combined aerobic and muscle strength training improve aerobic fitness, muscle strength, function and quality of life in people with spinal cord injury? A systematic review. Spinal Cord 2015, 53, 418–431. [Google Scholar] [CrossRef]
- Pelletier, C. Exercise prescription for persons with spinal cord injury: A review of physiological considerations and evidence-based guidelines. Appl. Physiol. Nutr. Metab. 2023, 48, 882–895. [Google Scholar] [CrossRef]
- Ginis, K.A.M.; Latimer, A.E.; Hicks, A.L.; Craven, B.C. Development and evaluation of an activity measure for people with spinal cord injury. Med. Sci. Sports Exerc. 2005, 37, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Pickett, G.E.; Campos-Benitez, M.; Keller, J.L.; Duggal, N. Epidemiology of traumatic spinal cord injury in Canada. Spine 2006, 31, 799–805. [Google Scholar] [CrossRef]
- Stevens, S.L.; Caputo, J.L.; Fuller, D.K.; Morgan, D.W. Physical activity and quality of life in adults with spinal cord injury. J. Spinal Cord Med. 2008, 31, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [CrossRef]
- Colado, J.C.; Garcia-Masso, X.; Triplett, N.T.; Calatayud, J.; Flandez, J.; Behm, D.; Rogers, M.E. Construct and concurrent validation of a new resistance intensity scale for exercise with thera-band® elastic bands. J. Sports Sci. Med. 2014, 13, 758–766. [Google Scholar]
- Kang, D.; Park, J.; Jeong, I.; Eun, S.D. Comparing the effects of multicomponent exercise with or without power training on the cardiorespiratory fitness, physical function, and muscular strength of patients with stroke: A randomized controlled trial. J. Sports Med. Phys. Fit. 2021, 62, 722–731. [Google Scholar] [CrossRef]
- Adams, J.; Lai, B.; Rimmer, J.; Powell, D.; Yarar-Fisher, C.; Oster, R.A.; Fisher, G. Telehealth high-intensity interval exercise and cardiometabolic health in spinal cord injury. Trials 2022, 23, 633. [Google Scholar] [CrossRef]
- Park, J.; Kang, D.; Eun, S.D. Development and pilot testing of novel game-based respiratory rehabilitation exercise devices for patients with tetraplegia. Technol. Health Care 2021, 29, 1119–1127. [Google Scholar] [CrossRef]
- Kang, D.; Park, J.; Eun, S.D. A preliminary study on the feasibility of community game-based respiratory muscle training for individuals with high cervical spinal cord injury levels: A novel approach. BMC Sports Sci. Med. Rehabil. 2022, 14, 137. [Google Scholar] [CrossRef]
- Arsh, A.; Darain, H.; Rahman, M.U.; Ullah, I.; Shakil-Ur-Rehman, S. Reliability of modified functional reach test in the assessment of balance function in people with spinal cord injury: A systematic review. JPMA J. Pak. Med. Assoc. 2021, 71, 2040–2044. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A.G. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Willig, R.M.; Garcia, I.; da Silva, N.S.L.; Corredeira, R.; Carvalho, J. The effectiveness of community-based upper body exercise programs in persons with chronic paraplegia and manual wheelchair users: A systematic review. J. Spinal Cord Med. 2022, 45, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Itodo, O.A.; Flueck, J.L.; Raguindin, P.F.; Stojic, S.; Brach, M.; Perret, C.; Glisic, M. Physical activity and cardiometabolic risk factors in individuals with spinal cord injury: A systematic review and meta-analysis. Eur. J. Epidemiol. 2022, 37, 335–365. [Google Scholar] [CrossRef]
- Ginis, K.A.M.; Hicks, A.L. Exercise research issues in the spinal cord injured population. Exerc. Sport Sci. Rev. 2005, 33, 49–53. [Google Scholar]
- He, L.W.; Guo, X.J.; Zhao, C.; Rao, J.S. Rehabilitation training after spinal cord injury affects brain structure and function: From mechanisms to methods. Biomedicines 2023, 12, 41. [Google Scholar] [CrossRef]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Yu, X. Clinical benefit of rehabilitation training in spinal cord injury: A systematic review and meta-analysis. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef]
- Jacobs, P.L.; Nash, M.S. Exercise recommendations for individuals with spinal cord injury. Sports Med. 2004, 34, 727–751. [Google Scholar] [CrossRef]
- Ponzano, M.; Buren, R.; Adams, N.T.; Jun, J.; Jetha, A.; Mack, D.E.; Ginis, K.A.M. Effect of exercise on mental health and health-related quality of life in adults with spinal cord injury: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2024, 104, 1850–1856. [Google Scholar] [CrossRef]
Warm-Up/Cool-Down | Resistance–Upper Extremities | Resistance–Trunk | Aerobic | |
---|---|---|---|---|
Aerobic | Flexibility | |||
Freewheeling | Static stretching Dynamic stretching | Upper Body Shoulder Press Lateral raise Front raise Bent-over lateral raise Chest Press Chest fly Lat pulldown Bent-over row Back row Biceps Curl Triceps Extension Triceps kickback | Overhead side bend Overhead twist Overhead bend Seated forward press Seated twist Bend and twist Side bend Back extension Seated cat camel Deadlift | Seated Walking on the spot without moving forward Shuttle run |
Medical Part | Age | Years |
Gender | Male or female | |
American Spinal Injury Association (ASIA) level | A, B, C, D, E | |
Hypertension, anemia, dyspnea or asthma, orthostatic hypotension, diabetes, medications for heart disease, coronary stent, epilepsy, medications for anticoagulants, medications for depression, rigidity, autonomic dysreflexia, bladder management, bowel care, pressure ulcer, acute low back pain within 4 weeks, joint pain, medications for osteoporosis, hip or femur fractures | Yes or no | |
Anthropometric Part | Blood pressure | mmHg |
Height | cm | |
Weight | kg | |
Body mass index | Underweight/normal weight/overweight | |
Days of discharge from the hospital | Number of days |
Study Period | ||||
---|---|---|---|---|
Enrollment | Allocation | Post-Allocation | Closeout | |
Timepoint, baseline | t | 0 | T16 | tx |
Enrollment | ||||
Eligibility screening | X | |||
Informed consent | X | |||
(Participant) Self-report questionnaires | X | |||
(Clinicians) Confirm participants’ self-report questionnaires and medical history and write doctor’s notes | X | |||
Allocation | X | |||
Assessments | ||||
Baseline variables | X | |||
Post-intervention variables | X | X | ||
Intervention | ||||
Experimental group | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Park, J. Community-Based Exercise Programs Post Spinal Cord Injury Hospitalization: A Pilot Study for a Randomized, Multicenter, Double-Blind Controlled Setting. Life 2024, 14, 1135. https://doi.org/10.3390/life14091135
Kang D, Park J. Community-Based Exercise Programs Post Spinal Cord Injury Hospitalization: A Pilot Study for a Randomized, Multicenter, Double-Blind Controlled Setting. Life. 2024; 14(9):1135. https://doi.org/10.3390/life14091135
Chicago/Turabian StyleKang, Dongheon, and Jiyoung Park. 2024. "Community-Based Exercise Programs Post Spinal Cord Injury Hospitalization: A Pilot Study for a Randomized, Multicenter, Double-Blind Controlled Setting" Life 14, no. 9: 1135. https://doi.org/10.3390/life14091135
APA StyleKang, D., & Park, J. (2024). Community-Based Exercise Programs Post Spinal Cord Injury Hospitalization: A Pilot Study for a Randomized, Multicenter, Double-Blind Controlled Setting. Life, 14(9), 1135. https://doi.org/10.3390/life14091135