Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Eggs Collection Process
2.2. Larvae Collection Process
2.3. Cluster Analysis of Inhabited Building
2.4. Hot-Spots Analysis
2.5. Relationship between Hotspot and Non-Residential Larval Habitats
2.6. Priors and Fixed Effects
2.7. Overfitting Avoiding and Software
3. Results
3.1. Eggs Collection
3.2. Larvae Collection
3.3. Inhabited Buildings Clusters Analysis
3.4. Eggs Hot-Spot Analysis
3.5. Relation of Non-Residential Larval Habits in Hot-Spot Production: Evaluation of the Model
3.6. Multilevel Model Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Glob-al Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop Dis. 2012, 6, e1760. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X. Chikungunya in the Americas. Lancet 2014, 383, 514. [Google Scholar] [CrossRef]
- Simmons, C.P.; Farrar, J.J.; van Vinh Chau, N.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika Virus in Gabon (Central Africa)—2007: A New Threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Aedes Aegypti—Factsheet for Experts. 2023. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti (accessed on 10 July 2023).
- Lounibos, L.P.; Kramer, L.D. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus. J. Infect. Dis. 2016, 214 (Suppl. S5), S453–S458. [Google Scholar] [CrossRef]
- World Health Organization. Dengue and Severe Dengue. 2019. Available online: https://www.who.int/news-room/questions-and-answers/item/dengue-and-severe-dengue (accessed on 10 July 2023).
- Lepe López, M.A.; Dávila, M.; Canet, M.; Lopez, Y.; Flores, E.; Dávila, A.; Escobar, L.E. Distribución de Aedes aegypti y Aedes albopictus en Guatemala 2016. Cienc. Tecnol. A Y Salud 2017, 4, 21–31. [Google Scholar] [CrossRef]
- Monroy, C.; Yuichiro, T.; Rodas, A.; Mejía, M.; Pichilla, R.; Mauricio, H.; Pérez, M. Distribución de Aedes albopictus (Diptera: Culicidad) en Guatemala, Seguimiento a Una Colonización de 1995. Re-vista Científica de la Facultad de Ciencias Químicas y Farmacia. 1999, Volume 12. Available online: http://revistasguatemala.usac.edu.gt/index.php/qyf/article/view/350 (accessed on 22 December 2022).
- Ogata, K.; López, A. Discovery of Aedes albopictus in Guatemala. J. Am. Mosq. Control Assoc. 1996, 12, 503–506. [Google Scholar]
- Rodríguez-Flores, J.; Monzón-Muñoz, M.V.; Diéguez- Fernández, L.; Yax-Caxaj, P.M.; Iannacone, J. Culícidos de relevancia médico-veterinario de Jutiapa, Guatemala: 2009–2017. Biotempo 2018, 15, 49–57. [Google Scholar] [CrossRef]
- Monzón, M.V.; Rodríguez, J.; Diéguez, L.; Alarcón-Elbal, P.M.; San Martín, J.L. Hábitats de cría de Aedes aegypti (Diptera: Culicidae) en Jutiapa, Guatemala. Novit Caribaea 2019, 14, 111–120. [Google Scholar] [CrossRef]
- Diéguez, L.; Hernández, C.A.; Zacarías, R.; Salazar, V. Contribución al estudio de la familia Culi-cidae de Guatemala: Relación y distribución geográfica de las principales especies en la región norte. Rev. Cubana Med. Trop. 2006, 58, 30–35. [Google Scholar]
- Soto López, J.D. Relación espacial entre Aedes aegypti (Linnaeus, 1762) y la enfermedad de dengue en Guatemala. Rev. Científica De La Fac. De Cienc. Químicas Y Farm. 2019, 29, 8–25. [Google Scholar] [CrossRef]
- Gray, K.; Scott, T.W.; Getis, A.; Morrison, A.C. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 2003, 69, 494–505. [Google Scholar]
- Olanratmanee, P.; Kittayapong, P.; Chansang, C.; Hoffmann, A.A.; Weeks, A.R.; Endersby, N.M. Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy. PLoS Negl. Trop. Dis. 2013, 7, e1913. [Google Scholar] [CrossRef] [PubMed]
- Yee, D.A. Thirty Years of Aedes albopictus (Diptera: Culicidae) in America: An Introduction to Current Perspectives and Future Challenges. J. Med. Entomol. 2016, 53, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Faraji, A.; Unlu, I. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 2016, 53, 1029–1047. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease emergence. Nature 2005, 438, 355–359. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública y Asistencia Social-Organización Panamericana de la Salud. Manual operativo de vigilancia y control entomológico de Aedes aegypti vector del dengue y Chikungunya en Guatemala. Guatemala; 2015. Available online: https://iris.paho.org/handle/10665.2/54945 (accessed on 22 December 2022).
- Bousema, T.; Griffin, J.T.; Sauerwein, R.W.; Smith, D.L.; Churcher, T.S.; Takken, W.; Ghani, A.; Drakeley, C.; Gosling, R. Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination. PLoS Med. 2012, 9, e1001165. [Google Scholar] [CrossRef]
- Bisanzio, D.; Dzul-Manzanilla, F.; Gomez-Dantés, H.; Pavia-Ruz, N.; Hladish, T.J.; Lenhart, A.; Palacio-Vargas, J.; Gonzalez Roldan, J.F.; Correa-Morales, F.; Sánchez-Tejeda, G.; et al. Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl. Trop. Dis. 2018, 12, e0006298. [Google Scholar] [CrossRef]
- Paull, S.H.; Song, S.; McClure, K.M.; Sackett, L.C.; Kilpatrick, A.M.; Johnson, P.T. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 2012, 10, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Dye, C.; Etard, J.F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Hagan, P.; Hii, J.X.; Ndhlovu, P.D.; Quinnell, R.J.; et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud. Documento Técnico Para la Implementación de Intervenciones Basado en Escenarios Operativos Genéricos Para el Control del Aedes Aegypti; Organización Panamericana de la Salud: Washington, DC, USA, 2019. [Google Scholar]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Escobar, L.E.; Romero-Alvarez, D.; Leon, R.; Lepe-Lopez, M.A.; Craft, M.E.; Borbor-Cordova, M.J.; Svenning, J.C. Declining Prevalence of Disease Vectors Under Climate Change. Sci. Rep. 2016, 6, 39150. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Criscione, C.D.; Anderson, J.D.; Sudimack, D.; Subedi, J.; Upadhayay, R.P.; Jha, B.; Williams, K.D.; Williams-Blangero, S.; Anderson, T.J. Landscape Genetics Reveals Focal Transmission of a Human Macroparasite. PLoS Negl. Trop. Dis. 2010, 4, e665. [Google Scholar] [CrossRef]
- Clements, A.C.; Firth, S.; Dembelé, R.; Garba, A.; Touré, S.; Sacko, M.; Landouré, A.; Bosqué-Oliva, E.; Barnett, A.G.; Brooker, S.; et al. Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in western Africa. Bull World Health Organ. 2009, 87, 921–929. [Google Scholar] [CrossRef] [PubMed]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: https://qgis.org (accessed on 9 March 2022).
- Pan American Health Organization (PAHO). Dengue and Dengue Hemorrhagic Fever in the Americas: Guidelines for Prevention and Control; Publication No. 548; Pan American Health Organization: Washington, DC, USA, 1994. [Google Scholar]
- Bova, J.; Paulson, S.; Paulson, G. Morphological Differentiation of the Eggs of North American Container-Inhabiting Aedes Mosquitoes. J. Am. Mosq. Control Assoc. 2016, 32, 244–246. [Google Scholar] [CrossRef]
- Matsuo, K.; Yoshida, Y.; Lien, J.C. Scanning Electron Microscopy of Mosquitoes: II. The egg sur-face structure of 13 species of Aedes from Taiwan. J. Med. Entomol. 1974, 11, 179–188. [Google Scholar] [CrossRef]
- Farajollahi, A.; Price, D.C. A Rapid Identification Guide for Larvae of the Most Common North American Container-Inhabiting Aedes Species of Medical Importance. J. Am. Mosq. Control Assoc. 2013, 29, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Rueda, L. Pictorial Keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission; Online Edition; Magnolia Press: Auckland, New Zealand, 2004. [Google Scholar]
- Soto-López, J.; Vieira-Lista, C.; Barrios-Izás, M. Efecto de la cobertura vegetal de terrenos deshabitados en la percepción de recipientes ecológicamente viables para Aedes aegypti Linnaeus, 1762. Cienc. Tecnol. Y Salud 2024, 10, 134–148. [Google Scholar] [CrossRef]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns Methodology and Applications with R; Chapman and Hall/CRC Press: London, UK, 2015; Available online: http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/ (accessed on 9 March 2022).
- LaCon, G.; Morrison, A.C.; Astete, H.; Stoddard, S.T.; Paz-Soldan, V.A.; Elder, J.P.; Halsey, E.S.; Scott, T.W.; Kitron, U.; Vazquez-Prokopec, G.M. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 2014, 8, e3038. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 9 March 2022).
- Harrington, L.; Scott, T.; Lerdthusnee, K.; Coleman, R.; Costero, A.; Clark, G.; Jones, J.J.; Kitthawee, S.; Kittayapong, P.; Sithiprasasna, R.; et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 2005, 72, 209–220. [Google Scholar] [CrossRef]
- Anselin, L.; GeoDa Workbook. Maps for Rates or Proportions. 2018. Available online: https://geodacenter.github.io/ (accessed on 8 March 2022).
- McElreath, R. Rethinking: Statistical Rethinking Book Package; Chapman and Hall/CRC: London, UK, 2020. [Google Scholar]
- Russell, B.M.; Kay, B.H.; Shipton, W. Survival of Aedes aegypti; (Diptera: Culicidae) Eggs in Surface and Subterranean Breeding Sites During the Northern Queensland Dry Season. J. Med. Entomol. 2001, 38, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, D.; Rubio, A.; Velázquez, S.M.; Schweigmann, N.; Wiegand, T. Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Trop. 2005, 95, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Landau, K.I.; van Leeuwen, W.J.D. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona. J. Vector Ecol. 2012, 37, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E. Temperature-Dependent Development and Sur-vival Rates of Culex quinquefaciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1990, 27, 892–898. [Google Scholar] [CrossRef]
- Nelson, M.J. Aedes aegypti Biología y Ecología; Organización Panamerica-na de la Salud: Washington, DC, USA, 1986. [Google Scholar]
- Servicio Nacional de Erradicación de la Malaria. Memoria Anual 1974; Ministerio de Salud Pública y Asistencia Social: Guatemala City, Guatemala, 1975. [Google Scholar]
- Ponciano, J.A.; Polanco, W.; Barrios, M. Dengue outbreaks pattern in southern Guatemala. Cienc. Tecnol. Y Salud 2019, 6, 158–170. [Google Scholar] [CrossRef]
- Ramasamy, R.; Surendran, S.N. Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones. Front. Physiol. 2012, 3, 198. [Google Scholar] [CrossRef] [PubMed]
R | K(r) | CIinf | CIsup | K’(r)H | CIinf | CIsup | K(r)O | CIinf | CIsup |
---|---|---|---|---|---|---|---|---|---|
25 | 2032.3 | 1998.9 | 2063 | 3249.1 | 3215.8 | 3283.5 | 6604.9 | 0 | 16,512 |
50 | 7819.6 | 7760.5 | 7878.9 | 11,668.5 | 11,578.5 | 11,759.5 | 13,209.8 | 3302.5 | 26,419 |
100 | 31,278.3 | 31,164.2 | 31,396.9 | 42,694.4 | 42,405 | 42,949.5 | 13,209.8 | 3302.5 | 26,419 |
150 | 71,299 | 71,079 | 71,527.5 | 92,051.2 | 91,531 | 92,545.9 | 40,390.1 | 19,814 | 63,507 |
200 | 126,342.7 | 126,059 | 126,672 | 156,752.3 | 155,976 | 15,752 | 99,834.3 | 65,960 | 135,400 |
Model | WAIC | pWAIC | Standar Error |
---|---|---|---|
1 | 127.6 | 0.7 | 2.21 |
2 | 134.0 | 1.3 | 3.46 |
3 | 254.1 | 15.5 | 28.61 |
4 | 182.4 | 9.2 | 7.01 |
5 | 129.6 | 1.3 | 2.21 |
6 | 183.1 | 5.9 | 25.85 |
* 7 | 95.9 | 1.4 | 3.79 |
7 | 95.9 | 1.4 | 3.71 |
Mean | Standar Deviation | 5.50% | 94.50% | n_eff | Rhat | |
---|---|---|---|---|---|---|
γ | 0.881016996 | 0.639191811 | 0.1587952 | 2.06881852 | 46,818.543 | 1.00008543 |
β | 0.067488959 | 0.053101507 | 0.00541973 | 0.1676695 | 68,750.3299 | 0.99998469 |
α | 1.117058114 | 0.805886235 | 0.20272539 | 2.62788381 | 47,446.6902 | 1.00013199 |
etasq | 0.080203564 | 0.131349391 | 0.00374498 | 0.23398684 | 24,402.3169 | 0.99999281 |
rhosq | 1.73661865 | 1.921797854 | 0.02956985 | 5.3976698 | 71,109.0244 | 0.99999232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-López, J.D.; Barrios-Izás, M.A.; Vieira Lista, M.C.; Muro, A. Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life 2024, 14, 1013. https://doi.org/10.3390/life14081013
Soto-López JD, Barrios-Izás MA, Vieira Lista MC, Muro A. Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life. 2024; 14(8):1013. https://doi.org/10.3390/life14081013
Chicago/Turabian StyleSoto-López, Julio D., Manuel A. Barrios-Izás, María Carmen Vieira Lista, and Antonio Muro. 2024. "Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production" Life 14, no. 8: 1013. https://doi.org/10.3390/life14081013
APA StyleSoto-López, J. D., Barrios-Izás, M. A., Vieira Lista, M. C., & Muro, A. (2024). Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life, 14(8), 1013. https://doi.org/10.3390/life14081013