Sarcopenia and Mortality in Critically Ill COVID-19 Patients
Abstract
:1. Introduction
2. Literature Strategy
3. Potential Causes of Sarcopenia
4. Effect of COVID-19 on Muscles
5. Sarcopenia on Mortality in Severely Ill COVID-19 Patients
6. Sarcopenia on Mortality in Critically Ill Patients
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trypsteen, W.; Van Cleemput, J.; Snippenberg, W.V.; Gerlo, S.; Vandekerckhove, L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog. 2020, 16, e1009037. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 2020, 508, 254–266. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 14 December 2022).
- Cekic, S.; Karali, Z.; Cicek, F.; Canitez, Y.; Sapan, N. The Impact of the COVID-19 Pandemic in Adolescents with Asthma. J. Korean Med. Sci. 2021, 36, e339. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, F.; Byrd, J.B.; Yu, H.; Ye, X.; He, Y. Differential COVID-19 Symptoms Given Pandemic Locations, Time, and Comorbidities During the Early Pandemic. Front. Med. 2022, 9, 770031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Fugazzaro, S.; Contri, A.; Esseroukh, O.; Kaleci, S.; Croci, S.; Massari, M.; Facciolongo, N.C.; Besutti, G.; Iori, M.; Salvarani, C.; et al. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5185. [Google Scholar] [CrossRef] [PubMed]
- Huo, F.; Liu, Q.; Liu, H. Contribution of muscle satellite cells to sarcopenia. Front. Physiol. 2022, 13, 1652. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Giannini, M.; Oulehri, W.; Riou, M.; Marcot, C.; Pizzimenti, M.; Debrut, L.; Charloux, A.; Geny, B.; Meyer, A. Long Term Follow-Up of Sarcopenia and Malnutrition after Hospitalization for COVID-19 in Conventional or Intensive Care Units. Nutrients 2022, 14, 912. [Google Scholar] [CrossRef]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.W.; You, P.; Wang, B.L.; Liu, C.; Chien, C.W.; Tung, T.H. Prevalence of sarcopenia in patients with COVID-19: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 925606. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Zamboni, M. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Montero-Errasquín, B.; Cruz-Jentoft, A.J. Acute Sarcopenia. Gerontology 2023, 69, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Arpa, Ö.; Uğur, H.; Pehlivan, M.; Saleki, N.; Çelik, T. Metabolic risks and prognosis of COVID-19: Are dietary patterns important? Nutr. Food Sci. 2023, 53, 752–768. [Google Scholar] [CrossRef]
- Perisetti, A.; Goyal, H.; Yendala, R.; Chandan, S.; Tharian, B.; Thandassery, R.B. Sarcopenia in hepatocellular carcinoma: Current knowledge and future directions. World J. Gastroenterol. 2022, 28, 432. [Google Scholar] [CrossRef] [PubMed]
- Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.; Sun, P.Y.; Davies, K.J.; Grune, T. Sarcopenia–Molecular mechanisms and open questions. Ageing Res. Rev. 2021, 65, 101200. [Google Scholar] [CrossRef] [PubMed]
- Rogeri, P.S.; Zanella, R., Jr.; Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; et al. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Samoilova, Y.G.; Matveeva, M.V.; Khoroshunova, E.A.; Kudlay, D.A.; Oleynik, O.A.; Spirina, L.V. Markers for the Prediction of Probably Sarcopenia in Middle-Aged Individuals. J. Pers. Med. 2022, 12, 1830. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to measure, when and why. La Radiol. Medica 2022, 127, 228–237. [Google Scholar] [CrossRef]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef]
- Soares, M.N.; Eggelbusch, M.; Naddaf, E.; Gerrits, K.H.; van der Schaaf, M.; van den Borst, B.; Wiersinga, W.J.; Vugt, M.V.; Weijs, P.J.M.; Murray, A.J.; et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J. Cachexia Sarcopenia Muscle 2022, 13, 11–22. [Google Scholar] [CrossRef]
- Andrade-Junior, M.C.D.; Salles, I.C.D.D.; de Brito, C.M.M.; Pastore-Junior, L.; Righetti, R.F.; Yamaguti, W.P. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front. Physiol. 2021, 12, 640973. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.P.; Thompson Bastin, M.L.; Montgomery-Yates, A.A.; Pastva, A.M.; Dupont-Versteegden, E.E.; Parry, S.M.; Morris, P.E. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness. Crit. Care 2020, 24, 637. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I.; Iqbal, M.S. The coupling between sarcopenia and COVID-19 is the real problem. Eur. J. Intern. Med. 2021, 93, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, e048391. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, F.G.; Fiotti, N.; Sisto, U.G.; Nunnari, A.; Colla, S.; Mearelli, F.; Vinci, P.; Schincariol, P.; Biolo, G. Skeletal Muscle in Hypoxia and Inflammation: Insights on the COVID-19 Pandemic. Front. Nutr. 2022, 9, 865402. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.; Masud, T.; Wilson, D.; Jackson, T.A. COVID-19 and acute sarcopenia. Aging Dis. 2020, 11, 1345. [Google Scholar] [CrossRef]
- Nagano, A.; Wakabayashi, H.; Maeda, K.; Kokura, Y.; Miyazaki, S.; Mori, T.; Fujiwara, D. Respiratory sarcopenia and sarcopenic respiratory disability: Concepts, diagnosis, and treatment. J. Nutr. Health Aging 2021, 25, 507–515. [Google Scholar] [CrossRef]
- Kim, J.W.; Yoon, J.S.; Kim, E.J.; Hong, H.L.; Kwon, H.H.; Jung, C.Y.; Kim, K.C.; Sung, Y.S.; Park, S.-H.; Kim, S.-K.; et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J. Gerontol. Ser. A 2021, 76, e110–e116. [Google Scholar] [CrossRef]
- Schiaffino, S.; Albano, D.; Cozzi, A.; Messina, C.; Arioli, R.; Bnà, C.; Bruno, A.; Carbonaro, L.A.; Carriero, A.; Carriero, S.; et al. CT-derived chest muscle metrics for outcome prediction in patients with COVID-19. Radiology 2021, 300, E328–E336. [Google Scholar] [CrossRef]
- Erkan, M.; Atasoy, D.; Sayan, H.E.; Topal, D.; Güneş, M. Sarcopenia is associated with mortality in patients with COVID-19 independent of other demographic risk factors. Eur. Res. J. 2023, 9, 73–80. [Google Scholar] [CrossRef]
- Erdöl, M.A.; Kayaaslan, B.; Erdoğan, M.; Hasanoğlu, İ.; Yayla, Ç.; Eser, F.C.; Beşler, M.S.; Kalem, A.K.; Yayla, K.G.; Erdöl, A.K.; et al. Sarcopenia and its prognostic role on hospitalization and in-hospital mortality in coronavirus disease 2019 patients with at least one cardiovascular risk factor. Turk Kardiyol. Dern. Ars. 2022, 50, 103. [Google Scholar] [CrossRef] [PubMed]
- Ufuk, F.; Demirci, M.; Sagtas, E.; Akbudak, I.H.; Ugurlu, E.; Sari, T. The prognostic value of pneumonia severity score and pectoralis muscle Area on chest CT in adult COVID-19 patients. Eur. J. Radiol. 2020, 131, 109271. [Google Scholar] [CrossRef] [PubMed]
- Hocaoglu, E.; Ors, S.; Yildiz, O.; Inci, E. Correlation of pectoralis muscle volume and density with severity of COVID-19 pneumonia in adults. Acad. Radiol. 2021, 28, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Polat, M.; Salbas, Ç.S.; Sari, S.; Dogan, M.; Cam, S.; Karadag, A. The association between prognosis and sarcopenia assessed by psoas muscle measurements in elderly male patients with COVID-19. Turk. J. Geriatr./Türk Geriatr. Derg. 2021, 24, 557–566. [Google Scholar] [CrossRef]
- Attaway, A.; Welch, N.; Dasarathy, D.; Amaya-Hughley, J.; Bellar, A.; Biehl, M.; Dugar, S.; Engelen, M.P.K.J.; Zein, J.; Dasarathy, S. Acute skeletal muscle loss in SARS-CoV-2 infection contributes to poor clinical outcomes in COVID-19 patients. J. Cachexia Sarcopenia Muscle 2022, 13, 2436–2446. [Google Scholar] [CrossRef]
- Surov, A.; Kardas, H.; Besutti, G.; Pellegrini, M.; Ottone, M.; Onur, M.R.; Atak, F.; Erdemir, A.G.; Hocaoglu, E.; Yıldız, Ö.; et al. Prognostic role of the pectoralis musculature in patients with COVID-19. A multicenter study. Acad. Radiol. 2023, 30, 77–82. [Google Scholar] [CrossRef]
- Poros, B.; Becker-Pennrich, A.S.; Sabel, B.; Stemmler, H.J.; Wassilowsky, D.; Weig, T.; Hinske, L.C.; Zwissler, B.; Ricke, J.; Hoechter, D.J. Anthropometric analysis of body habitus and outcomes in critically ill COVID-19 patients. Obes. Med. 2021, 25, 100358. [Google Scholar] [CrossRef]
- Hosch, R.; Kattner, S.; Berger, M.M.; Brenner, T.; Haubold, J.; Kleesiek, J.; Koitka, S.; Kroll, L.; Kureishi, A.; Flaschel, N.; et al. Biomarkers extracted by fully automated body composition analysis from chest CT correlate with SARS-CoV-2 outcome severity. Sci. Rep. 2022, 12, 16411. [Google Scholar] [CrossRef]
- Nobel, Y.R.; Su, S.H.; Anderson, M.R.; Luk, L.; Small-Saunders, J.L.; Reyes-Soffer, G.; Gallagher, D.; Freedberg, D.E. Relationship Between Body Composition and Death in Patients with COVID-19 Differs Based on the Presence of Gastrointestinal Symptoms. Dig. Dis. Sci. 2022, 67, 4484–4491. [Google Scholar] [CrossRef]
- McGovern, J.; Dolan, R.; Richards, C.; Laird, B.J.; McMillan, D.C.; Maguire, D. Relation between body composition, systemic inflammatory response, and clinical outcomes in patients admitted to an urban teaching hospital with COVID-19. J. Nutr. 2021, 151, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
- Riesgo, H.; Castro, A.; Del Amo, S.; San Ceferino, M.J.; Izaola, O.; Primo, D.; Hoyos, E.G.; Gómez, J.J.L.; de Luis, D.A. Prevalence of risk of malnutrition and risk of sarcopenia in a reference hospital for COVID-19: Relationship with mortality. Ann. Nutr. Metab. 2021, 77, 324–329. [Google Scholar] [CrossRef] [PubMed]
- de Silva, C.L.; Sousa, T.M.M.; de Sousa Junior, J.B.; Nakano, E.Y. Nutritional factors associated with mortality in hospitalized patients with COVID-19. Clin. Nutr. Open Sci. 2022, 45, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, K.; Ryś, M.; Perera, I.; Gryglewska, B.; Fedyk-Łukasik, M.; Michel, J.P.; Wizner, B.; Sydor, W.; Olszanecka, A.; Grodzicki, T.; et al. Factors associated with mortality in hospitalized, non-severe, older COVID-19 patients–the role of sarcopenia and frailty assessment. BMC Geriatr. 2022, 22, 941. [Google Scholar] [CrossRef] [PubMed]
- Damanti, S.; Cristel, G.; Ramirez, G.A.; Bozzolo, E.P.; Da Prat, V.; Gobbi, A.; Centurioni, C.; Di Gaeta, E.; Del Prete, A.; Calabrò, M.G.; et al. Influence of reduced muscle mass and quality on ventilator weaning and complications during intensive care unit stay in COVID-19 patients. Clin. Nutr. 2022, 41, 2965–2972. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-K.; Lee, Y.-R.; Song, J.-E.; Kweon, Y.-O.; Tak, W.-Y.; Jang, S.-Y.; Park, J.-G.; Park, S.-Y. Prognostic Impact of Myosteatosis on Mortality in Hospitalized Patients with COVID-19. Diagnostics 2022, 12, 2255. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma-Velázquez, P.; Miranda-Zazueta, G.; Ortiz-Brizuela, E.; González-Lara, M.F.; Tamez-Torres, K.M.; Román-Montes, C.M.; Díaz-Mejía, B.A.; Pérez-García, E.; Villanueva-Reza, M.; Tovar-Méndez, V.H.; et al. Low thoracic skeletal muscle area is not associated with negative outcomes in patients with COVID-19. Am. J. Phys. Med. Rehabil. 2021, 100, 413–418. [Google Scholar] [CrossRef]
- Kardas, H.; Thormann, M.; Bär, C.; Omari, J.; Wienke, A.; Pech, M.; Surov, A. Impact of pectoral muscle values on clinical outcomes in patients with severe COVID-19 disease. In Vivo 2022, 36, 375–380. [Google Scholar] [CrossRef]
- Antonarelli, M.; Fogante, M. Chest CT-derived muscle analysis in COVID-19 patients. Tomography 2022, 8, 414–422. [Google Scholar] [CrossRef]
- Graziano, E.; Peghin, M.; De Martino, M.; De Carlo, C.; Da Porto, A.; Bulfone, L.; Casarsa, V.; Sozio, E.; Fabris, M.; Cifù, A.; et al. The impact of body composition on mortality of COVID-19 hospitalized patients: A prospective study on abdominal fat, obesity paradox and sarcopenia. Clin. Nutr. ESPEN 2022, 51, 437–444. [Google Scholar] [CrossRef]
- Darmon, M.; Bourmaud, A.; Georges, Q.; Soares, M.; Jeon, K.; Oeyen, S.; Rhee, C.K.; Gruber, P.; Ostermann, M.; Hill, Q.A. Changes in critically ill cancer patients’ short-term outcome over the last decades: Results of systematic review with meta-analysis on individual data. Intensive Care Med. 2019, 45, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Ceniccola, G.; Holanda, T.; Pequeno, R.; Mendonça, V.; Oliveira, A.; Carvalho, L.; de Brito-Ashurst, I.; Araujo, W. Relevance of AND-ASPEN criteria of malnutrition to predict hospital mortality in critically ill patients: A prospective study. J. Crit. Care 2018, 44, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Mayr, V.D.; Dünser, M.W.; Greil, V.; Jochberger, S.; Luckner, G.; Ulmer, H.; Friesenecker, B.E.; Takala, J.; Hasibeder, W.R. Causes of death and determinants of outcome in critically ill patients. Crit. Care 2006, 10, R154. [Google Scholar] [CrossRef] [PubMed]
- Kizilarslanoglu, M.C.; Kuyumcu, M.E.; Yesil, Y.; Halil, M. Sarcopenia in critically ill patients. J. Anesth. 2016, 30, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Moisey, L.L.; Mourtzakis, M.; Cotton, B.A.; Premji, T.; Heyland, D.K.; Wade, C.E.; Bulger, E.; Kozar, R.A. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit. Care 2013, 17, R206. [Google Scholar] [CrossRef] [PubMed]
- Baggerman, M.R.; van Dijk, D.P.; Winkens, B.; van Gassel, R.J.; Bol, M.E.; Schnabel, R.M.; Bakers, F.C.; Damink SW, O.; van de Poll, M.C. Muscle wasting associated co-morbidities, rather than sarcopenia are risk factors for hospital mortality in critical illness. J. Crit. Care 2020, 56, 31–36. [Google Scholar] [CrossRef]
- Yeung, S.S.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Dou, Q.; Wang, C.; Zhang, W.; Yang, Y.; Wang, J.; Xie, X.; Zhou, J.; Zeng, Y. Falls among older adults with sarcopenia dwelling in nursing home or community: A meta-analysis. Clin. Nutr. 2020, 39, 33–39. [Google Scholar] [CrossRef]
- Chang, K.-V.; Hsu, T.-H.; Wu, W.-T.; Huang, K.-C.; Han, D.-S. Association between sarcopenia and cognitive impairment: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1164.e7–1164.e15. [Google Scholar] [CrossRef]
- Ando, Y.; Ishigami, M.; Ito, T.; Ishizu, Y.; Kuzuya, T.; Honda, T.; Ishikawa, T.; Fujishiro, M. Sarcopenia impairs health-related quality of life in cirrhotic patients. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Barazanchi, A.W.; MacFater, W.S.; Hill, A.G. The impact of computed tomography-assessed sarcopenia on outcomes for trauma patients–a systematic review and meta-analysis. Injury 2019, 50, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Chen, D.; Xie, X.-H.; Zhang, J.-E.; Zeng, Y.; Cheng, A.S. Sarcopenia as a predictor of mortality among the critically ill in an intensive care unit: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 339. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Looijaard, W.G.; Dekker, I.M.; Stapel, S.N.; Girbes, A.R.; Straaten, H.M.; Beishuizen, A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit. Care 2014, 18, R12. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.K.; Hall, C.B.; Amodu, A.; Sharma, D.; Androga, L.; Hawkins, M. Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS ONE 2018, 13, e0194697. [Google Scholar]
- Gropper, S.; Hunt, D.; Chapa, D.W. Sarcopenia and Psychosocial Variables in Patients in Intensive Care Units: The Role of Nutrition and Rehabilitation in Prevention and Treatment. Crit. Care Nurs. Clin. N. Am. 2019, 31, 489–499. [Google Scholar] [CrossRef]
- Nergiz, S.; Ozturk, O. The impact of Prognostic Nutritional Index on mortality in patients with COVID-19. Nutr. Food Sci. 2023; ahead-of-print. [Google Scholar] [CrossRef]
Authors and Country | Study Design | Population & Sample Size, n | Median Age, y | Sarcopenia Assessment | Sarcopenia Diagnostic Criteria | Mortality Definition | Follow Up, mo/d | Main Findings-Mortality | Other Findings |
---|---|---|---|---|---|---|---|---|---|
Studies on the direct association between sarcopenia and mortality | |||||||||
Kim et al. [30] South Korea | Retrospective cohort study | Hospitalized COVID-19 patients, n = 121 (44 men; 77 women) | 62 | Axial chest CT scan at the level of T12 (SMI) | SMI (men, ≤24 cm2/m2; women, ≤20 cm2/m2) | Mortality | 4 mo | Sarcopenia was associated with mortality but not independently (p = 0.004) | Sarcopenia was independently associated with a longer time to discharge (p < 0.001) |
Schiaffino et al. [31] Italy | Multicenter Retrospective observational study | Hospitalized COVID-19 patients, n = 552 (364 men; 188 women) | 65 | Axial Chest CT image, all muscles at T5 and T12 level (DMI, PMA, PMI, SMM) | - | In-hospital mortality | 2 mo, 21 d | Low PMA was associated with death (p = 0.001) | Low PMA was associated with ICU admission (p < 0.001) |
Erkan et al. [32] Turkey | Retrospective study | Hospitalized COVID-19 patients, n = 302 (146 men; 156 women) | 56.7 to 69.7 | Axial Chest CT scan at a level of T12 (SMA) | -SMI (men, 34.1 cm2/m2; women, 29.4 cm2/m2) -Univariate and multivariate analysis | In-hospital mortality | - | Sarcopenia was associated independently with mortality (p < 0.001) | Sarcopenia was associated with hospitalization and ICU admission (p < 0.001) |
Erdöl et al. [33] Turkey | Retrospective cohort study | Hospitalized COVID-19 patients with >1 CVD risk factor, n = 232 (117 men; 115 women) | 51 | Chest radiographs and axial CT scan at a level of T12 (CSA, SM, ESM, PM) | -SM-CSA (<21.7 cm2) -ESM (<11.4 cm2/m2) -PM (<10.3 cm2/m2) | -In-hospital mortality -All-cause mortality | 1–48 mo | Low SM-CSA (Tertile 3) had the highest mortality rate (p < 0.001) | Diabetes and hypertension in addition to sarcopenia were associated with in-hospital mortality |
Ufuk et al. [34] Turkey | Retrospective study | Hospitalized COVID-19 patients, n = 130 (76 men; 54 women) | 48 | Axial chest CT image (CSA, PMA, PMI) | PMI (men, ≤12.7 cm2/m2; women, ≤9 cm2/m2) | Death during follow-up | 1 | Low PMI associated with death (p = 0.019) | Low PMI was associated with longer hospital stays (p = 0.01) |
Hocaoglu et al. [35] Turkey | Retrospective study | Hospitalized COVID-19 patients, n = 217 (108 men; 109 women) | 61 | Axial Chest CT scan (PMV, PD) | PD (women, ≤15.9; men, (≤34.1) | In-hospital mortality | - | A significant association between mortality and PD of ≤15.9 in women and ≤34.1 in male (p = 0.001) | Low PV associated with increased severity |
Polat et al. [36] Turkey | Retrospective | Hospitalized COVID-19, male patients, n = 130 | 74 | Single-axial chest CT image at level of L2 (Psoas CSA, Psoas density, Psoas MI) | - | In-hospital mortality | 2 | -Low PMI is significantly associated with mortality (p = 0.001). -No significant between psoas density and psoas CSA & mortality | No significant association between Psoas CSA, Psoas density, PMI, and ICU admission |
Attaway et al. [37] USA | Retrospective cohort study | Hospitalized COVID-19 patients, n = 95 (50 men; 45 women) | 63.3 | Axial chest CT scan, PM above the aortic arch & ESM at a level of T12 (CSA, PM, ESM) | -PM (<29 cm2). -ESM (<35.2 cm2) | In-hospital Mortality | 10 mo | Loss of PM was associated with mortality (p = 0.006), while a loss in ESM was not (p = 0.089) | Loss in PM was associated with ICU admission (p = 0.006) |
Surov et al. [38] Turkey | Retrospective cohort study | Hospitalized COVID-19 patients, n = 1138 (591 men; 547 women) | 54.5 | Axial thoracic CT at a level of T4 (PMA, PMI, PMD, and PMG) | PMA, PMI, PMD, and PMG | 30-d mortality | - | PM parameters (PMA, PMI, PMD, and PMG) were associated with mortality (p < 0.001) | Lower parameters of the PM were associated with unfavorable outcomes (p < 0.01) |
Poros et al. [39] Germany | Retrospective | Hospitalized COVID-19 patients, n = 74 (60 men; 14 women) | 66 | Thoracic CT scan at the level of T5 (PMA, CSA) | - | In-hospital mortality | 1 | Died patients had lower muscle CSA and PMA. (p < 0.001) | -≥65 y had lower thoracic SMM compared to ≤65 y -Men had greater thoracic SMM with less ventilation and ICU need than women |
Hosch et al. [40] Germany | Retrospective cohort study | Hospitalized COVID-19 patients, n = 918 (564 men; 354 women) | 78 | CT thorax scan | - | In-hospital mortality | 24 mo, 12 d | Sarcopenia had a significant association with mortality (p < 0.0001) | -Sarcopenia had a significant association with severity (p < 0.0001). -Cardiac marker was only associated with severity (p < 0.0001) |
Nobel et al. [41] | Retrospective cohort study | Hospitalized COVID-19 patients, n = 190 (105 men; 85 women) | 64 | Abdomen axial CT slice at the L3 vertebral level (SMI) | - | 30-d mortality | 1 mo, 5 d | Patients who died had less SMI (p = 0.01) | Patients who died had greater IMAT area, VAT area, and SAT (p = 0.049) |
McGovern et al. [42] UK | Retrospective cohort study | Hospitalized COVID-19 patients, n = 63 (30 men; 33 women) | 67% had the age of >70 | CT image at L3 for thorax, abdomen, and pelvis (SMI) | Men: BMI < 25 kg/m2 & SMI < 43 cm2/m2, or BMI ≥ 25 & SMI < 53 cm2/m2. Women: BMI < 25 & SMI < 41 cm2/m2, or BMI ≥ 25 & SMI < 41 cm2/m2 | 30-d mortality | 1 mo, 13 d | Low SMI was associated with 30 d mortality (p < 0.05) | High VFA was associated with 30 d mortality (p < 0.05) |
Riesgo et al. [43] Spain | Cross-sectional study | Hospitalized COVID-19 patients, n = 337 (167 men; 170 women) | 86.1 | SARC-F questionnaire | ASRC-F score of ≥4 is predictive of sarcopenia | Mortality | 5 mo | Only SARC-F score ≥4 was independently associated with mortality (p = 0.01) | Inpatients who died, their age was higher (p = 0.01), while albumin was lower (p = 0.01) |
de Silva et al. [44] Brazil | Historical cohort study | Hospitalized COVID-19 patients, n = 222 (125 men; 97 women) | 62.8 | SARC-F questionnaire | >4 as predictive of sarcopenia | In-hospital mortality | 9 mo | Sarcopenia was higher in dead patients than survivors (p < 0.001) | BMI and albumin were lower in dead patients (<0.001, p = 0.009, p < 0.001) |
Piotrowicz et al. [45] Poland | Prospective, cohort study | Hospitalized COVID-19 patients, n = 163 (90 men; 73 women) | ≥65 | EWGSOP2 guidelines | ≥4 points as predictive of sarcopenia | -In-hospital mortality -3-mo post-discharge | 3 mo | Sarcopenia is associated with greater mortality risk by 441% (p = 0.01) | No significant association |
Damanti et al. [46] Italy | Retrospective cohort study | Hospitalized COVID-19 patients, n = 81 (71 men; 10 women) | 59.3 | Axial chest CT scan at level of L3 (SMI, Muscle density, CSA) | SMI (women, 34.4 cm2/m2; men, 45.4 cm2/m2) | -In-hospital mortality -Mortality in ICU | 2 mo, 4 d | -Muscle CSA and density were inversely associated with hospital mortality (p = 0.02, p = 0.046). -SMI was inversely associated with hospital (p = 0.002) and ICU (p = 0.008) mortality | Muscle density had an inverse association with the complications in ICU (p = 0.03), length of hospitalization (p = 0.002) |
Studies on no association between sarcopenia and mortality | |||||||||
Kang et al. [47] South Korea | Retrospective study | Hospitalized COVID-19 patients, n = 127 (67 men; 60 women) | 61 | Cross-sectional Chest CT image, at level of L2 (SMA, SMI) | SMI (men, <50 cm2/m2; women, <39 cm2/m2) | 4-mo mortality | 4 mo | Sarcopenia was not associated with 4-mo mortality. | N/A |
Moctezuma- Velázquez et al. [48] Mexico | Retrospective cohort | Hospitalized COVID-19 patients, n = 519 (332 men; 187 women) | 51 | Transverse CT scan image e at the level of T12 (SMI) | SMI (men, <42.6 cm2/m2; women, <30.6 cm2/m2) | In-hospital mortality | 3 mo, 12 d | No association between low SMM, SMI, SMA, and mortality | No significant association between low SMM, SMI, and SMA with invasive mechanical ventilation and ICU admission |
Kardas et al. [49] Germany | Retrospective cohort study | Hospitalized COVID-19 patients, n = 46 (27 men; 19 women) | 64.5 | Axial chest CT scan at the level of T4 (PMI, PMA, SMG) | - | 30-d mortality | 3 mo | Sarcopenia measures were not associated with 30 d mortality (p > 0.05) | |
Antonarelli et al. [50] Italy | Retrospective study | Hospitalized COVID-19 patients, n = 112 (82 men; 30 women) | 60.5 | Axial chest CT image at a level of T4 (PMA, PMI, PMD) | - | In-hospital mortality | 9 | No association between PMA and PMD with mortality | Higher PMA and PMD associated with shorter ICU stay (p = 0.0034), (p = 0.0002) |
Graziano et al. [51] Italy | Prospective cohort study | Hospitalized COVID-19 patients, n = 195 (126 men; 69 women) | 71 | SECA, using tetrapolar method (SMM) | SMM/BMI ratio (men, 1.05 kg/m2; women, 0.71 kg/m2) | -In-hospital mortality -30-d mortality | 1 | Sarcopenia was not associated with 30-d mortality. (p = 0.211) | Sarcopenia was associated with a need for ventilator (p = 0.051), but not ICU admission nor length of stay |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakti, F.A.Z.; Abusalah, L.; Ganji, V. Sarcopenia and Mortality in Critically Ill COVID-19 Patients. Life 2024, 14, 24. https://doi.org/10.3390/life14010024
Yakti FAZ, Abusalah L, Ganji V. Sarcopenia and Mortality in Critically Ill COVID-19 Patients. Life. 2024; 14(1):24. https://doi.org/10.3390/life14010024
Chicago/Turabian StyleYakti, Fatima Al Zahra, Lana Abusalah, and Vijay Ganji. 2024. "Sarcopenia and Mortality in Critically Ill COVID-19 Patients" Life 14, no. 1: 24. https://doi.org/10.3390/life14010024
APA StyleYakti, F. A. Z., Abusalah, L., & Ganji, V. (2024). Sarcopenia and Mortality in Critically Ill COVID-19 Patients. Life, 14(1), 24. https://doi.org/10.3390/life14010024