Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Enolase Clusters
2.2. Consensus Sequence and Homology Modeling
2.3. Analysis of the Physicochemical and Immunogenic Properties and Prediction of Epitopes Associated with B and T cells
2.4. Molecular Docking and Interaction Analysis
2.5. Protein Chimera Construction
2.6. Characterization of Protein Chimeric Constructs
3. Results
3.1. T. Cruzi Enolase Clusters and Consensus Sequence
3.2. Modeling by Homology of Enolase Consensus Sequence
3.3. Analysis of Physicochemical and Immunogenic Properties
3.4. Molecular Docking and Protein–Receptor Interactions
3.5. Enolase Chimera Epitope-Based
3.6. Physicochemical Features, Secondary Structural Analysis, and Modelling of Protein Chimeric Constructs
3.7. Chimeric Constructs: Antigenicity, Allergenicity Profiling, and Proteasomal Cleavage
3.8. Molecular Docking of Protein Chimeric Constructs and Protein-Receptor Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz 1909, 1, 159–218. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Castrejón, Ó.; Rivas-Sánchez, B. Notes for the history of Chagas’ disease in Mexico. Boletín Méd. Hosp. Infant. México 2008, 65, 57–79. [Google Scholar]
- Rojo-Medina, J.; Ruiz-Matus, C.; Salazar-Schettino, P.M.; Gonzalez-Roldan, J.F. Enfermedad de Chagas en Mexico. Gac. Méd. México 2018, 154, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.P.; Starr, M.C.; Cantey, P.T.; Edwards, M.S.; Meymandi, S.K. Neglected parasitic infections in the United States: Chagas disease. Am. J. Trop. Med. Hyg. 2014, 90, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas Disease in the United States: A Public Health Approach. Clin. Microbiol. Rev. 2019, 33, e00023-19. [Google Scholar] [CrossRef] [PubMed]
- Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010, 115, 14–21. [Google Scholar] [CrossRef]
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef]
- Abras, A.; Ballart, C.; Fernandez-Arevalo, A.; Pinazo, M.J.; Gascon, J.; Munoz, C.; Gallego, M. Worldwide Control and Management of Chagas Disease in a New Era of Globalization: A Close Look at Congenital Trypanosoma cruzi Infection. Clin. Microbiol. Rev. 2022, 35, e0015221. [Google Scholar] [CrossRef]
- Laing, G.; Vigilato, M.A.N.; Cleaveland, S.; Thumbi, S.M.; Blumberg, L.; Salahuddin, N.; Abdela-Ridder, B.; Harrison, W. One Health for neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 182–184. [Google Scholar] [CrossRef]
- Zingales, B.; Andrade, S.G.; Briones, M.R.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R.; et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 2012, 12, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Brisse, S.; Verhoef, J.; Tibayrenc, M. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int. J. Parasitol. 2001, 31, 1218–1226. [Google Scholar] [CrossRef]
- Perez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Perez-Molina, J.A.; Crespillo-Andujar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal treatment of Chagas disease. Enferm. Infecc. Microbiol. Clin. Engl. Ed. 2021, 39, 458–470. [Google Scholar] [CrossRef]
- Manne, J.M.; Snively, C.S.; Ramsey, J.M.; Salgado, M.O.; Barnighausen, T.; Reich, M.R. Barriers to treatment access for Chagas disease in Mexico. PLoS. Negl. Trop. Dis. 2013, 7, e2488. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471–479. [Google Scholar] [CrossRef]
- Crespillo-Andujar, C.; Chamorro-Tojeiro, S.; Norman, F.; Monge-Maillo, B.; Lopez-Velez, R.; Perez-Molina, J.A. Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: When available options fail. Clin. Microbiol. Infect. 2018, 24, 1344.E1–1344.E4. [Google Scholar] [CrossRef] [Green Version]
- Dumonteil, E.; Herrera, C. The Case for the Development of a Chagas Disease Vaccine: Why? How? When? Trop. Med. Infect. Dis. 2021, 6, 16. [Google Scholar] [CrossRef]
- Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 2000, 3, 445–450. [Google Scholar] [CrossRef]
- Pal-Bhowmick, I.; Krishnan, S.; Jarori, G.K. Differential susceptibility of Plasmodium falciparum versus yeast and mammalian enolases to dissociation into active monomers. FEBS J. 2007, 274, 1932–1945. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Hu, X.; Zhang, X.; Ge, Y.; Zhao, S.; Hu, Y.; Ashman, R.B. Immunisation with the glycolytic enzyme enolase confers effective protection against Candida albicans infection in mice. Vaccine 2011, 29, 5526–5533. [Google Scholar] [CrossRef]
- Chen, N.; Yuan, Z.G.; Xu, M.J.; Zhou, D.H.; Zhang, X.X.; Zhang, Y.Z.; Wang, X.W.; Yan, C.; Lin, R.Q.; Zhu, X.Q. Ascaris suum enolase is a potential vaccine candidate against ascariasis. Vaccine 2012, 30, 3478–3482. [Google Scholar] [CrossRef] [PubMed]
- Carabarin-Lima, A.; Rodriguez-Morales, O.; Gonzalez-Vazquez, M.C.; Baylon-Pacheco, L.; Reyes, P.A.; Arce-Fonseca, M.; Rosales-Encina, J.L. In silico approach for the identification of immunological properties of enolase from Trypanosoma cruzi and its possible usefulness as vaccine in Chagas disease. Parasitol. Res. 2014, 113, 1029–1039. [Google Scholar] [CrossRef]
- Pancholi, V. Multifunctional alpha-enolase: Its role in diseases. Cell. Mol. Life Sci. 2001, 58, 902–920. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.P.; Costa, L.E.; Lage, D.P.; Dias, D.S.; Ribeiro, P.A.F.; Machado, A.S.; Ramos, F.F.; Salles, B.C.S.; Fagundes, M.I.; Carvalho, G.B.; et al. Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cell Immunol. 2018, 334, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, L.; Song, X.; Li, X.; Yan, R. Molecular cloning of enolase from Trichinella spiralis and the protective immunity in mice. Acta Parasitol. 2018, 63, 252–260. [Google Scholar] [CrossRef]
- Arce-Fonseca, M.; Gonzalez-Vazquez, M.C.; Rodriguez-Morales, O.; Graullera-Rivera, V.; Aranda-Fraustro, A.; Reyes, P.A.; Carabarin-Lima, A.; Rosales-Encina, J.L. Recombinant Enolase of Trypanosoma cruzi as a Novel Vaccine Candidate against Chagas Disease in a Mouse Model of Acute Infection. J. Immunol. Res. 2018, 2018, 8964085. [Google Scholar] [CrossRef] [Green Version]
- Aslett, M.; Aurrecoechea, C.; Berriman, M.; Brestelli, J.; Brunk, B.P.; Carrington, M.; Depledge, D.P.; Fischer, S.; Gajria, B.; Gao, X.; et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010, 38, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Humana Totowa: Totowa, NJ, USA, 2005; pp. 571–607. Available online: https://web.expasy.org/protparam/ (accessed on 3 May 2022).
- Ong, E.; Cooke, M.F.; Huffman, A.; Xiang, Z.; Wong, M.U.; Wang, H.; Seetharaman, M.; Valdez, N.; He, Y. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 2021, 49, W671–W678. [Google Scholar] [CrossRef]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.; Lundegaard, C.; Lund, O.; Kesmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: Insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005, 57, 33–41. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef] [Green Version]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef]
- Jin, M.S.; Kim, S.E.; Heo, J.Y.; Lee, M.E.; Kim, H.M.; Paik, S.G.; Lee, H.; Lee, J.O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007, 130, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Ohto, U.; Yamakawa, N.; Akashi-Takamura, S.; Miyake, K.; Shimizu, T. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J. Biol. Chem. 2012, 287, 40611–40617. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 2016, 32, 3676–3678. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Jablonska, J.; Pravda, L.; Varekova, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. Available online: http://bioinf.cs.ucl.ac.uk/psipred/ (accessed on 3 May 2022). [CrossRef] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. Available online: http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi%3fid%3dindex/ (accessed on 3 May 2022). [CrossRef] [PubMed] [Green Version]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. BMC Bioinform. 2013, 14 (Suppl. S6), S4. Available online: https://www.ddg-pharmfac.net/AllerTOP/ (accessed on 4 May 2022). [CrossRef] [Green Version]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Peptide toxicity prediction. Methods Mol. Biol. 2015, 1268, 143–157. Available online: http://crdd.osdd.net/raghava/toxinpred/ (accessed on 4 May 2022). [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Zidek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 2006, 34, W310–W314. Available online: http://vakser.compbio.ku.edu/resources/gramm/grammx/ (accessed on 5 May 2022). [CrossRef] [PubMed]
- Michel-Todo, L.; Reche, P.A.; Bigey, P.; Pinazo, M.J.; Gascon, J.; Alonso-Padilla, J. In silico Design of an Epitope-Based Vaccine Ensemble for Chagas Disease. Front. Immunol. 2019, 10, 2698. [Google Scholar] [CrossRef] [Green Version]
- Higuera, S.L.; Guhl, F.; Ramirez, J.D. Identification of Trypanosoma cruzi discrete typing units (DTUs) through the implementation of a high-resolution melting (HRM) genotyping assay. Parasites Vectors 2013, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Brisse, S.; Barnabe, C.; Banuls, A.L.; Sidibe, I.; Noel, S.; Tibayrenc, M. A phylogenetic analysis of the Trypanosoma cruzi genome project CL Brener reference strain by multilocus enzyme electrophoresis and multiprimer random amplified polymorphic DNA fingerprinting. Mol. Biochem. Parasitol. 1998, 92, 253–263. [Google Scholar] [CrossRef]
- Burgess, R.R. Use of bioinformatics in planning a protein purification. Methods Enzymol. 2009, 463, 21–28. [Google Scholar] [PubMed]
- Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front. Immunol. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Khan, M.T.; Islam, R.; Jerin, T.J.; Mahmud, A.; Khatun, S.; Kobir, A.; Islam, M.N.; Akter, A.; Mondal, S.I. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS ONE 2021, 16, e0253393. [Google Scholar] [CrossRef]
- Saha, R.; Ghosh, P.; Burra, V. Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech 2021, 11, 47. [Google Scholar] [CrossRef]
- Acevedo, G.R.; Girard, M.C.; Gomez, K.A. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front. Immunol. 2018, 9, 1929. [Google Scholar] [CrossRef]
- Stahl, P.; Ruppert, V.; Schwarz, R.T.; Meyer, T. Trypanosoma cruzi evades the protective role of interferon-gamma-signaling in parasite-infected cells. PLoS ONE 2014, 9, e110512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef] [Green Version]
- Prohinar, P.; Re, F.; Widstrom, R.; Zhang, D.; Teghanemt, A.; Weiss, J.P.; Gioannini, T.L. Specific high affinity interactions of monomeric endotoxin.protein complexes with Toll-like receptor 4 ectodomain. J. Biol. Chem. 2007, 282, 1010–1017. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Mc Cafferty, S.; Combes, F.; Huysmans, H.; De Temmerman, J.; Gitsels, A.; Vanrompay, D.; Catani, J.P.; Sanders, N.N. mRNA therapeutics deliver a hopeful message. Nano Today 2018, 23, 16–39. [Google Scholar] [CrossRef]
- Sagili Anthony, D.P.; Sivakumar, K.; Venugopal, P.; Sriram, D.K.; George, M. Can mRNA Vaccines Turn the Tables During the COVID-19 Pandemic? Current Status and Challenges. Clin. Drug Investig. 2021, 41, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Peixeiro, I.; Silva, A.L.; Romao, L. Control of human beta-globin mRNA stability and its impact on beta-thalassemia phenotype. Haematologica 2011, 96, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol. 2017, 51, 227–234. [Google Scholar] [CrossRef]
- Srivastava, S.; Kamthania, M.; Singh, S.; Saxena, A.K.; Sharma, N. Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infect. Drug Resist. 2018, 11, 2377–2391. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Huang, F.; Zhang, J.; Chen, Q.; Zheng, Z.; Zhou, Q.; Chen, D.; Li, J.; Chen, J. Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein. J. Med. Virol. 2021, 93, 2115–2131. [Google Scholar] [CrossRef]
- Bonney, K.M.; Luthringer, D.J.; Kim, S.A.; Garg, N.J.; Engman, D.M. Pathology and Pathogenesis of Chagas Heart Disease. Annu. Rev. Pathol. 2019, 14, 421–447. [Google Scholar] [CrossRef]
- Dumonteil, E.; Herrera, C.; Tu, W.; Goff, K.; Fahlberg, M.; Haupt, E.; Kaur, A.; Marx, P.A.; Ortega-Lopez, J.; Hotez, P.J.; et al. Safety and immunogenicity of a recombinant vaccine against Trypanosoma cruzi in Rhesus macaques. Vaccine 2020, 38, 4584–4591. [Google Scholar] [CrossRef] [PubMed]
- Berna, L.; Rodriguez, M.; Chiribao, M.L.; Parodi-Talice, A.; Pita, S.; Rijo, G.; Alvarez-Valin, F.; Robello, C. Expanding an expanded genome: Long-read sequencing of Trypanosoma cruzi. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef]
- Franzen, O.; Talavera-Lopez, C.; Ochaya, S.; Butler, C.E.; Messenger, L.A.; Lewis, M.D.; Llewellyn, M.S.; Marinkelle, C.J.; Tyler, K.M.; Miles, M.A.; et al. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei. BMC Genom. 2012, 13, 531. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, D.; Baptista, R.P.; Li, Y.; Kissinger, J.C.; Tarleton, R.L. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS. Pathog. 2021, 17, e1009254. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Hernandez, F.; Rastrojo, A.; Poveda, C.; Girones, N.; Fresno, M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci. Rep. 2018, 8, 14631. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.P.; Reis-Cunha, J.L.; DeBarry, J.D.; Chiari, E.; Kissinger, J.C.; Bartholomeu, D.C.; Macedo, A.M. Assembly of highly repetitive genomes using short reads: The genome of discrete typing unit III Trypanosoma cruzi strain 231. Microb. Genom. 2018, 4, e000156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejas-Hernandez, F.; Girones, N.; Fresno, M. Genome Sequence of Trypanosoma cruzi Strain Bug2148. Genom. Announc. 2018, 6, e01497-17. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.B.; Lewis, M.D.; Cruickshank, C.; Gaunt, M.W.; Yeo, M.; Llewellyn, M.S.; Valente, S.A.; Maia da Silva, F.; Stevens, J.R.; Miles, M.A.; et al. Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding. Infect. Genet. Evol. 2011, 11, 44–51. [Google Scholar] [CrossRef]
- Weatherly, D.B.; Boehlke, C.; Tarleton, R.L. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genom. 2009, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [Green Version]
DTU | T. Cruzi Strains |
---|---|
I | Dm 28c, Jrcl 4, Sylvio X10/1, Brazil A4, H8 1 |
II | Esmeraldo, Y, Yc6 |
III | 231 |
IV | |
V | Bug2148 |
VI | TCC, Marinkellei B7, TulaCl2, CL Brener Non-Esmeraldo-like, CL Brener 1 |
Scores | Obtained Values | Ideal Values |
---|---|---|
MolProbity | 0.93 | 0 |
Clash | 0.61 | 0 |
Ramachandran favored | 96.49% | >98% |
Ramachandran outliers | 0.70% | <0.2% * |
Rotamer outliers | 0.87% | <1% * |
Bad bonds | 1/3317 | 0 |
Bad angles | 20/4483 | 0 |
Program | Obtained Values | Ideal Values |
---|---|---|
ProtParam | 46,474.05 Da (Molecular weight) | N/A |
5.92 (Theoretical isoelectric point) | N/A | |
50 (Positively charged residues Arg + Lys) | N/A | |
55 (Negatively charged residues Asp + Glu) | N/A | |
C2049H3279N563O631S18 (Formula) | N/A | |
6540 (Total atoms) | N/A | |
30, >20, and >10 (Half-life hours in mammals, and in vitro, yeast and bacteria, respectively) | N/A | |
39.77 (Instability index) | <40 | |
Vaxign 2.0 | 0.2 (Adhesion) | 1 |
Vaxign 2.0 | 1.0 (Cytoplasmic location) | 1 |
Vaxign 2.0 | 91.7 (Vaxign–ML) | ≥90 |
MHC-I Sequences | Proteasomal Cleavage | HLA Supertypes | MHC-II Sequences | HLA Supertypes |
---|---|---|---|---|
MTIQKVHGR | 4 | A68, A33, A31, A11 | GCSMAISKAAAARKG | DPA1, DPB1, DRB5, DRB1, DRB3 |
GTKEVRLPV | 4 | A68, A30, A01 | KDELQQSTLDKLMRD | DPA1, DPB1, DRB5 |
GTKEVRLPV | 3 | A02, A68 | KQYNLTFKSPEATWV | DRB5, DRB1 |
KLMRDLDGT | 4 | A02 | RFAICMDSAASETYD | DRB1 |
RSGETEDTY | 2 | A30, B58, B15 | REILDSRGNPTVEVE | DRB1, DQA1, DQB1 |
RTAKLNQLL | 4 | A24, B58, B57 | MTIQKVHGREILDSR FQEFMIAPVKAGSFN | DRB3, DQA1, DQB1, DPA1, DPB1 DRB1, DQA1, DQB1 |
Sequence | Length | Overlapping with HLA Epitopes |
---|---|---|
EILDSRGN | 8 | Yes (2) |
DDKRRYLG | 8 | No |
KKKYGQDAVN | 10 | No |
DENKKQYNLT | 10 | Yes (2) |
FKSPEATW | 8 | Yes (1) |
Receptor (PDB) | Docking Score | Affinity Energy ΔG (kcal/mol) | Dissociation Constant Kd (M) 25 °C |
---|---|---|---|
TLR 2 (2Z7X) | −249.7 | −18.1 | 5.0 × 10−14 |
TLR 4 (4G8A) | −262.99 | −18.6 | 2.5 × 10−14 |
Physicochemical Properties | MHC-I Chimeric Construct | MHC-II Chimeric Construct | Ideal Values |
---|---|---|---|
Molecular weight | 7342.12 Da | 12,765.42 Da | N/A |
Theoretical isoelectric point | 9.39 | 6.56 | N/A |
Positively charged residues Arg + Lys | 7 | 13 | N/A |
Negatively charged residues Asp + Glu | 9 | 13 | N/A |
Formula | C304H510N100O107S2 | C556H873N157O174S7 | N/A |
Total atoms | 1023 | 1767 | N/A |
Half-life hours in mammals and in vitro, yeast and bacteria, respectively | 30, >20 and >10 | 30, >20 and >10 | N/A |
Instability index | 36.10 | 34.65 | <40 |
Protein Chimeric | Receptor (PDB) | Affinity Energy ΔG (kcal/mol) | Dissociation Constant Kd (M) 25 °C |
---|---|---|---|
MHC-I | TLR 2 (2Z7X) | −14.3 | 3.1 × 10−11 |
TLR 4 (4G8A) | −13.9 | 6.0 × 10−11 | |
MHC-II | TLR 2 (2Z7X) | −14.7 | 1.7 × 10−11 |
TLR 4 (4G8A) | −16.0 | 2.0 × 10−12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Hernandez, A.; Gonzalez-Vazquez, M.C.; Arce-Fonseca, M.; Rodríguez-Morales, O.; Cedillo-Ramirez, M.L.; Carabarin-Lima, A. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life 2022, 12, 746. https://doi.org/10.3390/life12050746
Diaz-Hernandez A, Gonzalez-Vazquez MC, Arce-Fonseca M, Rodríguez-Morales O, Cedillo-Ramirez ML, Carabarin-Lima A. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life. 2022; 12(5):746. https://doi.org/10.3390/life12050746
Chicago/Turabian StyleDiaz-Hernandez, Alejandro, Maria Cristina Gonzalez-Vazquez, Minerva Arce-Fonseca, Olivia Rodríguez-Morales, Maria Lilia Cedillo-Ramirez, and Alejandro Carabarin-Lima. 2022. "Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach" Life 12, no. 5: 746. https://doi.org/10.3390/life12050746
APA StyleDiaz-Hernandez, A., Gonzalez-Vazquez, M. C., Arce-Fonseca, M., Rodríguez-Morales, O., Cedillo-Ramirez, M. L., & Carabarin-Lima, A. (2022). Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life, 12(5), 746. https://doi.org/10.3390/life12050746