Photoacoustic Imaging in Biomedicine and Life Sciences
Abstract
:1. Introduction
2. Fundamentals of Photoacoustic Imaging
2.1. PA Signal Generation and Imaging
2.2. Excitation Sources
2.3. Scanning PA Imaging Modalities
2.4. Acoustic Signal Detection
2.5. PA Image Contrast
3. Current Photoacoustic Imaging Modalities
3.1. PA Computed Tomography (PACT/PAT)
3.2. MultiSpectral Photoacoustic Tomography (MSOT)
3.3. Photoacoustic Microscopy (PAM)
3.3.1. Acoustic Resolution Photoacoustic Microscopy (AR-PAM)
3.3.2. Optical Resolution Photoacoustic Microscopy (OR-PAM)
3.4. Photoacoustic Endoscopy (PAE)
3.5. Photoacoustic Flow Cytometry (PAFC)
4. Biomedical Applications
4.1. Brain Imaging
4.2. Vascular Imaging
4.3. Blood Oxygenation and Flow
4.4. Breast Imaging
4.5. Urogenital Imaging
4.6. Whole Body (Deep Tissue) Imaging
4.7. Opthalmic Imaging
4.8. Dental Imaging
5. Skin Imaging
5.1. Molecular Diffusion/Optical Clearing
5.2. Detecting Circulating Tumor Cells
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, A.G. On the production and reproduction of sound by light. Comput. J. 1880, 9, 404–426. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wang, L.V. Photoacoustic Imaging. In Optical Imaging in Human Disease and Biological Research; Wei, X., Gu, B., Eds.; Springer: Singapore, 2021; pp. 147–175. [Google Scholar]
- Kim, J.; Kim, J.Y.; Jeon, S.; Baik, J.; Cho, S.; Kim, C. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light Sci. Appl. 2019, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hu, P.; Tong, X.; Na, S.; Cao, R.; Yuan, X.; Garrett, D.; Shi, J.; Maslov, K.; Wang, L. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun. 2021, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, J. Small-animal whole-body photoacoustic tomography: A review. IEEE Trans. Biomed. Eng. 2014, 61, 1380–1389. [Google Scholar]
- Lucero, M.Y.; Chan, J. Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic application. Nat. Chem. 2021, 13, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Russin, J.; Lin, L.; Yuan, X.; Hu, P.; Jann, K.; Yan, L.; Maslov, K.; Shi, J.; Wang, D.; et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng. 2021. [Google Scholar] [CrossRef]
- Bodea, S.V.; Westmeyer, G.G. Photoacoustic Neuroimaging—Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front. Neurosci. 2021, 15, 333. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, J.; Wang, L.V. Tutorial on photoacoustic tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef] [Green Version]
- O’Kelly, D.; Campbell, T.; Gerberich, J.; Karbasi, P.; Malladi, V.; Jamieson, A.; Wang, L.; Mason, R. A scalable open-source MATLAB toolbox for reconstruction and analysis of multispectral optoacoustic tomography data. Sci. Rep. 2021, 11, 19872. [Google Scholar] [CrossRef]
- Wang, L.; Yao, J. A Practical Guide to Photoacoustic Tomography in the Life Sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar] [CrossRef]
- Wang, L.; Gao, L. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu. Rev. Biomed. Eng. 2014, 16, 155–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media Mol. Imaging 2011, 6, 332–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Huang, L.; Jiang, M.S.; Jiang, H. Contrast agents for photoacoustic and thermoacoustic imaging: A review. Int. J. Mol. Sci. 2014, 15, 23616–23639. [Google Scholar] [CrossRef] [PubMed]
- Oraevsky, A.A. Contrast agents for optoacoustic imaging: Design and biomedical applications. Photoacoustics 2015, 3, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Dong, B.; Zhang, Z.; Zhang, H.F.; Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 2014, 4, 4496. [Google Scholar] [CrossRef]
- Jiang, H. Photoacoustic Tomography; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wang, L.V. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.V. Photoacoustic Tomography; Springer: New York, NY, USA, 2011; Chapter 19; pp. 743–760. [Google Scholar]
- Wang, L.; Wei Tay, J.; Wang, L.V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 2015, 9, 126–132. [Google Scholar]
- Sigrist, M.W. Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 1986, 60, R83–R121. [Google Scholar] [CrossRef]
- Upputuri, P.; Pramanik, M. Fast photoacoustic imaging systems using pulsed laser diodes: A review. Biomed. Eng. Lett. 2018, 8, 167–181. [Google Scholar] [CrossRef]
- Kimmelma, O. Passively Q-Switched Nd:YAG Lasers and Their Use in UV Light Generation. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2009. [Google Scholar]
- He, Y.; Orr, B.J. Tunable single-mode operation of a pulsed optical parametric oscillator pumped by a multimode laser. Appl. Opt. 2001, 40, 4836–4848. [Google Scholar] [CrossRef]
- Zeng, L.; Piao, Z.; Huang, S.; Jia, W.; Chen, Z. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Opt. Express 2015, 23, 31026–31033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Jokerst, J.V. Photoacoustic imaging with fiber optic technology: A review. Photoacoustics 2020, 20, 100211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Maslov, K.I.; Wang, L.V. Spectrally encoded photoacoustic microscopy using a digital mirror device. J. Biomed. Opt. 2012, 17, 066020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Zhou, Y.; Winkler, A.W.; Wang, L.; Maslov, K.I.; Li, C.; Wang, L.V. DMD-based random-access optical-resolution photoacoustic microscopy. Proc. SPIE 2014, 8943, 894312. [Google Scholar]
- Li, C.; Wang, L.V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 2009, 54, R59–R97. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 2009, 3, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xing, D.; Xiang, L. Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. J. Phys. D Appl. Phys. 2008, 41, 1458–1462. [Google Scholar] [CrossRef]
- Song, C.; Xi, L.; Jiang, H. Liquid acoustic lens for photoacoustic tomography. Opt. Lett. 2013, 38, 2930–2933. [Google Scholar] [CrossRef]
- Song, C.; Xi, L.; Jiang, H. Acoustic lens with variable focal length for photoacoustic microscopy. J. Appl. Phys. 2013, 114, 2930–2933. [Google Scholar] [CrossRef]
- Speirs, R.W.; Bishop, A.I. Photoacoustic Tomography using a Michelson Interferometer with Quadrature Phase Detection. Appl. Phys. Lett. 2013, 103, 2930–2933. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Laufer, J.; Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008, 47, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Paltauf, G.; Nuster, R.; Haltmeier, M.; Burgholzer, P. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl. Opt. 2007, 46, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Nuster, R.; Gruen, H.; Reitinger, B.; Burgholzer, P.; Gratt, S.; Passler, K.; Paltauf, G. Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography. Opt. Lett. 2011, 36, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, B.Y.; Chen, S.L.; Ling, T.; Guo, L.J.; Li, P.C. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Opt. Express 2012, 20, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dong, B.; Li, H.; Zhou, F.; Zhang, H.F.; Sun, C. Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. J. Appl. Phys. 2014, 116, 144501. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, B.Y.; Chen, S.L.; Ling, T.; Guo, L.J.; Li, P.C. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering. Photoacoustics 2014, 2, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jathoul, A.P.; Laufer, J.; Ogunlade, O.; Treeby, B.; Cox, B.; Zhang, E.; Johnson, P.; Pizzey, A.R.; Philip, B.; Marafioti, T.; et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 2015, 9, 239–246. [Google Scholar] [CrossRef]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E.; Beard, P.C. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light Sci. Appl. 2018, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissmeyer, G.; Shnaiderman, R.; Soliman, D.; Ntziachristos, V. Optoacoustic microscopy based on pi-FBG ultrasound sensors. Proc. SPIE 2017, 10064, 1006423. [Google Scholar]
- Broadway, C.; Gallego, D.; Pospori, A.; Zubel, M.; Webb, D.J.; Sugden, K.; Carpintero, G.; Lamela, H. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy. In Micro-Structured and Specialty Optical Fibres IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 9886, pp. 114–119. [Google Scholar]
- Taylor, L.R.; Doronin, A.; Meglinski, I.; Longdell, J.J. Acousto-optic imaging using quantum memories in cryogenic rare earth ion doped crystals. Proc. SPIE 2014, 8943, 89431D. [Google Scholar]
- Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photonics Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [PubMed]
- Luke, G.; Yeager, D.; Emelianov, S. Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents. Ann. Biomed. Eng. 2012, 40, 422–437. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Wang, L.V. Neurovascular photoacoustic tomography. Front. Neuroenerg. 2010, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef]
- Li, C.; Aguirre, A.; Gamelin, J.K.; Maurudis, A.; Zhu, Q.; Wang, L.V. Real-time photoacoustic tomography of cortical hemodynamics in small animals. J. Biomed. Opt. 2010, 15, 010509. [Google Scholar] [CrossRef]
- Hoelen, C.G.A.; De Mul, F.F.M.; Pongers, R.; Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 1998, 23, 648–650. [Google Scholar] [CrossRef]
- Yao, J.; Xia, J.; Maslov, K.I.; Nasiriavanaki, M.; Tsytsarev, V.; Demchenko, A.V.; Wang, L.V. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. NeuroImage 2013, 64, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Gamelin, J.; Maurudis, A.; Aguirre, A.; Huang, F.; Guo, P.; Wang, L.V.; Zhu, Q. A real-time photoacoustic tomography system for small animals. Opt. Express 2009, 17, 10489–10498. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Chatni, M.; Maslov, K.; Guo, Z.; Wang, K.; Anastasio, M.; Wang, L.V. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed Opt. 2012, 17, 050506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehler, A.; Herzog, E.; Razansky, D.; Ntziachristos, V. Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 2010, 35, 2475–2477. [Google Scholar] [CrossRef] [PubMed]
- Buehler, A.; Kacprowicz, M.; Taruttis, A.; Ntziachristos, V. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 2013, 38, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Van Es, P.; Biswas, S.K.; Bernelot Moens, H.J.; Steenbergen, W.; Manohar, S. Initial results of finger imaging using photoacoustic computed tomography. J. Biomed. Opt. 2014, 19, 1404–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, L.; Wang, B.; Ji, L.; Jiang, H. 4-D Photoacoustic Tomography. Sci. Rep. 2013, 3, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ephrat, P.; Roumeliotis, M.; Prato, F.S.; Carson, J.J. Four-dimensional photoacoustic imaging of moving targets. Opt. Express 2008, 16, 21570–21581. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Cho, Y.; Zou, J. A MEMS acoustic multiplexer for photoacoustic tomography. In Biomedical Optics, OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2014; p. BS3A.56. [Google Scholar]
- Tang, J.; Zhou, J.; Carney, P.R.; Jiang, H. Non-Invasive Real-time Photoacoustic Tomography of Hemodynamics in Freely Moving Rats. In Biomedical Optics, OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2014; p. BS4A.4. [Google Scholar]
- Li, X.; Heldermon, C.; Marshall, J.; Xi, L.; Yao, L.; Jiang, H. Functional photoacoustic tomography of breast cancer: Pilot clinical results. In Biomedical Optics, OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2014; p. BS3A.63. [Google Scholar]
- Nasiriavanaki, M.; Xia, J.; Wan, H.; Bauer, A.Q.; Culver, J.P.; Wang, L.V. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA 2014, 111, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Hoelen, C.G.A.; de Mul, F.F.M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 2000, 39, 5872–5883. [Google Scholar] [CrossRef]
- Kim, C.; Erpelding, T.N.; Jankovic, L.; Pashley, M.D.; Wang, L.V. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 2010, 1, 278–284. [Google Scholar] [CrossRef]
- Montilla, L.G.; Olafsson, R.; Bauer, D.R.; Witte, R.S. Real-time photoacoustic and ultrasound imaging: A simple solution for clinical ultrasound systems with linear arrays. Phys. Med. Biol. 2013, 58, N1–N12. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 2005, 71, 016706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowar, R. Time reversal for photoacoustic tomography based on the wave equation of Nachman, Smith and Waag. Phys. Rev. E 2014, 89, 023203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deán-Ben, X.L.; Buehler, A.; Ntziachristos, V.; Razansky, D. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 2012, 31, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Sandbichler, M.; Krahmer, F.; Berer, T.; Burgholzer, P.; Haltmeier, M. A Novel Compressed Sensing Scheme for Photoacoustic. SIAM J. Appl. Math. 2015, 75, 2475–2494. [Google Scholar] [CrossRef] [Green Version]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef]
- Taruttis, A.; van Dam, G.M.; Ntziachristos, V. Mesoscopic and Macroscopic Optoacoustic Imaging of Cancer. Cancer Res. 2015, 75, 1548–1559. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.C.; Patel, M.; Morscher, S.; Driessen, W.H.; Claussen, J.; Beziere, N.; Jetzfellner, T.; Taruttis, A.; Razansky, D.; Bednar, B.; et al. Multispectral Opto-acoustic Tomography (MSOT) of the Brain and Glioblastoma Characterization. NeuroImage 2013, 65, 522–528. [Google Scholar] [CrossRef]
- Morscher, S.; Driessen, W.H.; Claussen, J.; Burton, N.C. Semi-quantitative multispectral optoacoustic tomography (MSOT) for volumetric PK imaging of gastric emptying. Photoacoustics 2014, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Taruttis, A.; Morscher, S.; Burton, N.C.; Razansky, D.; Ntziachristos, V. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS ONE 2012, 7, e30491. [Google Scholar] [CrossRef]
- Buehler, A.; Herzog, E.; Ale, A.; Smith, B.D.; Ntziachristos, V.; Razansk, D. High resolution tumor targeting in living mice by means of multispectral optoacoustic tomography. EJNMMI Res. 2014, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Taruttis, A.; Wildgruber, M.; Kosanke, K.; Beziere, N.; Licha, K.; Haag, R.; Aichler, M.; Walch, A.; Rummeny, E.; Ntziachristos, V. Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 2013, 1, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taruttis, A.; Wildgruber, M.; Kosanke, K.; Beziere, N.; Licha, K.; Haag, R.; Aichler, M.; Walch, A.; Rummeny, E.; Ntziachristos, V. Optical and optoacoustic model-based tomography. IEEE Signal Process. Mag. 2015, 32, 88–100. [Google Scholar]
- Razansky, D.; Buehler, A.; Ntziachristos, V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 2011, 6, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Deán-Ben, X.L.; Razansky, D. Adding fifth dimension to optoacoustic imaging: Volumetric time-resolved spectrally enriched tomography. Light Sci. Appl. 2014, 3, e137. [Google Scholar] [CrossRef] [Green Version]
- Ivankovic, I.; Merčep, E.; Schmedt, C.G.; Deán-Ben, X.L.; Razansky, D. Real-time Volumetric Assessment of the Human Carotid Artery: Handheld Multispectral Optoacoustic Tomography. Radiology 2019, 291, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Ntziachristos, V.; Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 2010, 110, 2783–2794. [Google Scholar] [CrossRef]
- Maslov, K.; Stoica, G.; Wang, L.V. In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett. 2005, 30, 625–627. [Google Scholar] [CrossRef]
- Yao, J.; Maslov, K.I.; Puckett, E.R.; Rowland, K.J.; Warner, B.W.; Wang, L.V. Double-illumination photoacoustic microscopy. Opt. Lett. 2012, 37, 659–661. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Li, C.; Zhang, C.; Wang, L.V. Photoimprint Photoacoustic Microscopy for Three-Dimensional Label-Free Subdiffraction Imaging. Phys. Rev. Lett. 2014, 112, 014302. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Yang, X.; Liu, Y.; Deng, Y.; Luo, Q. Multiscale photoacoustic microscopy with continuously tunable resolution. Opt. Lett. 2014, 39, 3939–3941. [Google Scholar] [CrossRef]
- Zhu, L.; Li, L.; Gao, L.; Wang, L.V. Multi-view optical resolution photoacoustic microscopy. Optica 2014, 1, 217–222. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Wang, L.V. Grueneisen Relaxation Photoacoustic Microscopy. Phys. Rev. Lett. 2014, 113, 174301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.W.; Maslov, K.; Wang, L.V. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J. Appl. Phys. 2009, 105, 102027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Maslov, K.I.; Xing, W.; Garcia-Uribe, A.; Wang, L.V. Video-rate functional photoacoustic microscopy at depths. J. Biomed. Opt. 2012, 17, 106007. [Google Scholar] [CrossRef] [Green Version]
- Maslov, K.; Zhang, H.F.; Hu, S.; Wang, L.V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 2008, 33, 929–931. [Google Scholar] [CrossRef]
- Hu, S.; Maslov, K.; Wang, L.V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 2011, 36, 1134–1136. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yang, S.; Xing, D. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer. Appl. Phys. Lett. 2012, 100, 2012–2015. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yeh, C.; Hu, S.; Wang, L.; Soetikno, B.T.; Chen, R.; Zhou, Q.; Shung, K.K.; Maslov, K.I.; Wang, L.V. Fully motorized optical-resolution photoacoustic microscopy. Opt. Lett. 2014, 39, 2117–2120. [Google Scholar] [CrossRef]
- Moothanchery, M.; Bi, R.; Kim, J.Y.; Balasundaram, G.; Kim, C.; Olivo, M.C. High-speed simultaneous multiscale photoacoustic microscopy. J. Biomed. Opt. 2019, 24, 086001. [Google Scholar] [CrossRef]
- Hai, P.; Yao, J.; Maslov, K.I.; Zhou, Y.; Wang, L.V. Near-infrared optical-resolution photoacoustic microscopy. Opt. Lett. 2014, 5, 5192–5195. [Google Scholar] [CrossRef] [PubMed]
- Estrada, H.; Turner, J.; Kneipp, M.; Razansky, D. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution. Laser Phys. Lett. 2014, 11, 045601. [Google Scholar] [CrossRef]
- Li, B.; Qin, H.; Yang, S.; Xing, D. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens. Opt. Express 2014, 22, 20130–20137. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xi, L.; Jiang, H. Photoacoustic computed microscopy. Sci. Rep. 2014, 4, 4960. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, X.; Liu, Y.; Jiang, B.; Luo, Q. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective. Opt. Express 2013, 21, 24210–24218. [Google Scholar] [CrossRef]
- Shelton, R.; Mattison, S.P.; Applegate, B. Molecular specificity in photoacoustic microscopy by time-resolved transient absorption. Opt. Lett. 2014, 39, 3102–3105. [Google Scholar] [CrossRef]
- Mattison, S.P.; Applegate, B.E. Simplified method for ultra high-resolution photoacoustic microscopy via transient absorption. Opt. Lett. 2014, 39, 4474–4477. [Google Scholar] [CrossRef]
- Shelton, R.; Mattison, S.; Applegate, B. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy. J. Biophotonics 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Strohm, E.; Berndl, E.; Kolios, M. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics 2013, 1, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Danielli, A.; Maslov, K.; Garcia-Uribe, A.; Winkler, A.M.; Li, C.; Wang, L.; Chen, Y.; Dorn, G.W.; Wang, L.V. Label-free photoacoustic nanoscopy. J. Biomed. Opt. 2014, 19, 086006. [Google Scholar] [CrossRef]
- Zhao, T.; Desjardins, A.E.; Ourselin, S.; Vercauteren, T.; Xia, W. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics 2019, 16, 100146. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, S.; Aglyamov, S.; Amirian, J.; Smalling, R.; Emelianov, S. Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE Trans. Ultrason. Ferroelctr. Freq. Control 2007, 54, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Chen, R.; Favazza, C.; Yao, J.; Li, C.; Hu, Z.; Zhou, Q.; Shung, K.K.; Wang, L.V. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt. Express 2012, 20, 23944–23953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Yang, J.M.; Chen, R.; Yeh, C.H.; Zhu, L.; Maslov, K.; Zhou, Q.; Shung, K.K.; Wang, L.V. Urogenital photoacoustic endoscope. Opt. Lett. 2014, 39, 1473–1476. [Google Scholar] [CrossRef] [Green Version]
- Karpiouk, A.B.; Wang, B.; Emelianov, S.Y. Development of a catheter for combined intravascular ultrasound and photoacoustic imaging. Rev. Sci. Instrum. 2010, 81, 014901. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Favazza, C.; Yao, J.; Chen, R.; Zhou, Q.; Shung, K.; Wang, L.V. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus. PLoS ONE 2015, 10, e0120269. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Gong, X.; Hau, W.; Lin, R.; Zheng, J.; Liu, C.; Zeng, C.; Zou, X.; Zheng, H.; Song, L. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLoS ONE 2014, 9, e92463. [Google Scholar] [CrossRef] [Green Version]
- Jansen, K.; van der Steen, A.F.W.; van Beusekom, H.M.M.; Oosterhuis, J.W.; van Soest, G. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 2011, 36, 597–599. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ma, T.; Slipchenko, M.N.; Liang, S.; Hui, J.; Shung, K.K.; Roy, S.; Sturek, M.; Zhou, Q.; Chen, Z.; et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-khz barium nitrite Raman laser. Sci. Rep. 2014, 4, 6889. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gong, X.; Liu, C.; Lin, R.; Hau, W.; Bai, X.; Song, L. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J. Biomed. Opt. 2015, 20, 065006. [Google Scholar] [CrossRef]
- Galanzha, E.I.; Shashkov, E.V.; Spring, P.M.; Suen, J.Y.; Zharov, V.P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009, 69, 7926–7934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zharov, V.P.; Galanzha, E.I.; Shashkov, E.V.; Kim, J.W.; Khlebtsov, N.G.; Tuchin, V.V. Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J. Biomed. Opt. 2007, 12, 051503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanzha, E.I.; Shashkov, E.; Sarimollaoglu, M.; Beenken, K.E.; Basnakian, A.G.; Shirtliff, M.E.; Kim, J.W.; Smeltzer, M.S.; Zharov, V.P. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS ONE 2012, 7, e45557. [Google Scholar] [CrossRef] [PubMed]
- Galanzha, E.I.; Shashkov, E.V.; Tuchin, V.V.; Zharov, V.P. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytom. A 2008, 73, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Galanzha, E.I.; Zharov, V.P. Photoacoustic flow cytometry. Methods 2012, 57, 280–296. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Wu, B.; Dong, Y.; Song, Z.; Zhao, Y.; Ni, X.; Yang, Y.; Liu, Z. Biomedical photoacoustics: Fundamentals, instrumentation and perspectives on nanomedicine. Int. J. Nanomed. 2016, 12, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wang, L.V. Photoacoustic Tomography of the Brain; Springer: New York, NY, USA, 2013; Chapter Optical Methods and Instrumentation in Brain Imaging and Therapy. [Google Scholar]
- Guevara, E.; Berti, R.; Londono, I.; Xie, N.; Bellec, P.; Lesage, F.; Lodygensky, G.A. Imaging of an inflammatory injury in the newborn rat brain with Photoacoustic tomography. PLoS ONE 2013, 8, e83045. [Google Scholar] [CrossRef]
- Sela, G.; Lauri, A.; Deán-Ben, X.L.; Kneipp, M.; Ntziachristos, V.; Shoham, S.; Westmeyer, G.G.; Razansky, D. Functional optoacoustic neuro-tomography (FONT) for whole-brain monitoring of calcium indicators. arXiv 2015, arXiv:1501.02450. [Google Scholar]
- Yang, X.; Chen, Y.H.; Xia, F.; Sawan, M. Photoacoustic imaging for monitoring of stroke diseases: A review. Photoacoustics 2021, 23, 100287. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic brain imaging: From microscopic to macroscopic scales. Neurophotonics 2014, 1, 110003. [Google Scholar] [CrossRef] [Green Version]
- Nie, L.; Cai, X.; Maslov, K.; Garcia-Uribe, A.; Anastasio, M.A.; Wang, L.V. Photoacoustic tomography through a whole adult human skull with a photon recycler. J. Biomed. Opt. 2012, 17, 110506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, F.J.; Barger, J.E. Acoustical properties of the human skull. J. Acoust. Soc. Am. 1978, 63, 1576–1590. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chamberland, D.L.; Xi, G. Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains. J. Neurosci. Methods 2008, 168, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Tavakolian, P.; Kosik, I.; Chamson-Reig, A.; Lawrence, K.S.; Carson, J.J.L. Potential for photoacoustic imaging of neonatal brain. Proc. SPIE 2013, 8581, 858147. [Google Scholar]
- Yang, X.; Wang, L.V. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 2008, 13, 044009. [Google Scholar] [CrossRef]
- Allen, T.J.; Hall, A.; Dhillon, A.; Owen, J.S.; Beard, P.C. Photoacoustic imaging of lipid rich plaques in human aorta. Proc. SPIE 2010, 7564, 75640C. [Google Scholar]
- Piao, Z.; Ma, T.; Li, J.; Wiedmann, M.T.; Huang, S.; Yu, M.; Shung, K.K.; Zhou, Q.; Kim, C.S.; Chen, Z. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm. Appl. Phys. Lett. 2015, 107, 083701. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Jansen, K.; van der Steen, A.F.W.; van Soest, G. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomed. Opt. Express 2015, 6, 3276–3286. [Google Scholar] [CrossRef] [Green Version]
- Sethuraman, S.; Amirian, J.H.; Litovsky, S.H.; Smalling, R.W.; Emelianov, S.Y. Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging. Opt. Express 2007, 15, 16657–16666. [Google Scholar] [CrossRef]
- Jansen, K.; van Soest, G.; van der Steen, A.F.W. Intravascular photoacoustic imaging: A new tool for vulnerable plaque identification. Ultrasound Med. Biol. 2014, 40, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Jansen, K.; van Soest, G.; van der Steen, A.F.W. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt. Lett. 2012, 37, 1244–1246. [Google Scholar]
- Schoenhagen, P.; Vince, D.G. Intravascular photoacoustic tomography of coronary atherosclerosis. Am. Coll. Cardiol. 2014, 64, 391–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yang, S.; Ji, X.; Zhou, Q.; Xing, D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography. J. Am. Coll. Cardiol. 2014, 64, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esenaliev, R.A.; Larina, I.V.; Larin, K.V.; Deyo, D.J.; Motamedi, M.; Prough, D.S. Optoacoustic technique for noninvasive monitoring of blood oxygenation: A feasibility study. Appl. Opt. 2002, 41, 4722–4731. [Google Scholar] [CrossRef]
- Sivaramakrishnan, M.; Maslov, K.; Zhang, H.F.; Stoica, G.; Wang, L.V. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels. Phys. Med. Bio 2007, 52, 1349–1361. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghesagara, C.R.; Zemp, R.J. Combined photoacoustic and oblique-incidence diffuse reflectance system for quantitative photoacoustic imaging in turbid media. J. Biomed. Opt. 2010, 15, 046016. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.Q.; Nothdurft, R.E.; Erpelding, T.N.; Wang, L.V.; Culver, J.P. Quantitative photoacoustic imaging: Correcting for heterogeneous light fluence distributions using diffuse optical tomography. J. Biomed. Opt. 2011, 16, 096016. [Google Scholar] [CrossRef]
- Guo, Z.; Favazza, C.; Garcia-Uribe, A.; Wang, L.V. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime. J. Biomed. Opt. 2012, 17, 066011. [Google Scholar] [CrossRef]
- Ray, A.; Rajian, J.R.; Lee, Y.E.; Wang, X.; Kopelman, R. Lifetime-based photoacoustic oxygen sensing in vivo. J. Biomed. Opt. 2012, 17, 057004. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Danielli, A.; Liu, Y.; Wang, L.; Maslov, K.; Wang, L.V. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. Opt. Lett. 2013, 38, 2800–2803. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, L.; Yang, J.M.; Maslov, K.I.; Wong, T.T.; Li, L.; Huang, C.H.; Zou, J.; Wang, L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 2015, 12, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Maslov, K.; Wang, L.V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl. Acad. Sci. USA 2013, 110, 5759–5764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Yang, S.; Xing, D. Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection. Appl. Phys. Lett. 2010, 97, 213702. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Kim, E.K.; Kwak, J.Y.; Yoo, Y.; Song, T.K.; Chang, J.H. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications. Appl. Phys. Lett. 2011, 99, 153702. [Google Scholar] [CrossRef]
- Kang, J.; Kim, E.; Song, T.; Chang, J.H. Photoacoustic imaging of breast microcalcifications: A validation study with 3-dimensional ex vivo data. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; Volume 80, pp. 28–31. [Google Scholar]
- Xia, W.; Piras, D.; Singh, M.K.A.; van Hespen, J.C.G.; van Leeuwen, T.G.; Steenbergen, W.; Manohar, S. Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography. Biomed. Opt. Express 2013, 4, 2555–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijblom, M.; Piras, D.; Xia, W.; van Hespen, J.C.G.; Klaase, J.M.; van der Engh, F.M.; van Leeuwen, T.G.; Steenbergen, W.; Manohar, S. Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements? Opt. Express 2012, 20, 11582–11597. [Google Scholar] [CrossRef] [Green Version]
- Oraevsky, A.A. 3D Optoacoustic Tomography: From Molecular Targets in Mouse Models to Functional Imaging of Breast Cancer. In CLEO: OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2014; p. AM1P.4. [Google Scholar]
- Fakhrejahani, E.; Torii, M.; Kitai, T.; Kanao, S.; Asao, Y.; Hashizume, Y.T. Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging. PLoS ONE 2015, 10, e0139113. [Google Scholar]
- Li, R.; Wang, P.; Lan, L.; Lloyd, F.P.T.; Goergen, C.J.; Chen, S.; Cheng, J.X. Assessing breast tumor margin by multispectral photoacoustic tomography. Biomed. Opt. Express 2015, 6, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Balasundaram, G.; Ho, C.J.H.; Li, K.; Driessen, W.; Dinish, U.S.; Wong, C.L.; Ntziachristos, V.; Liu, B.; Olivo, M. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer. Int. J. Nanomed. 2015, 10, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhang, M.; Lang, J.; Leng, J.; Ren, Q.; Yang, J.; Li, C. In vivo study of endometriosis in mice by photoacoustic microscopy. J. Biophotonics 2015, 8, 94–101. [Google Scholar] [CrossRef]
- Laufer, J.; Norris, F.; Cleary, J.; Zhang, E.; Treeby, B.; Cox, B.; Johnson, P.; Scambler, P.; Lythgoe, M.; Beard, P. In vivo photoacoustic imaging of mouse embryos. J. Biomed. Opt. 2012, 17, 061220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, A.; Ishizawa, T.; Kamiya, M.; Shimizu, A.; Kaneko, J.; Ijichi, H.; Shibahara, J.; Fukayama, M.; Midorikawa, Y.; Urano, Y.; et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging. PLoS ONE 2014, 9, e112667. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Inoue, T.; Kobayashi, Y.; Nakano, K.; Matsuoka, H.; Yamauchi, F.; Yano, T.; Ohe, K. Near-infrared dye-conjugated amphiphilic hyaluronic acid derivatives as a dual contrast agent for in vivo optical and photoacoustic tumor imaging. Biomacromolecules 2015, 16, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Beziere, N.; Lozano, N.; Nunes, A.; Salichs, J.; Queiros, D.; Kostarelos, K.; Ntziachristos, V. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 2015, 37, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.; Zhang, Y.; Jeon, M.; Liu, C.; Song, L.; Lovell, J.; Kim, C. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 2015, 73, 142–148. [Google Scholar] [CrossRef]
- Yan, X.; Hu, H.; Lin, J.; Jin, A.J.; Niu, G.; Zhang, S.; Huang, P.; Shen, B.; Chen, X. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale 2015, 7, 2520–2526. [Google Scholar] [CrossRef]
- Sim, C.; Kim, H.; Moon, H.; Lee, H.; Chang, J.; Kim, H. Photoacoustic-based nanomedicine for cancer diagnosis and therapy. J. Control. Release 2015, 203, 118–125. [Google Scholar] [CrossRef]
- Silverman, R.H.; Kong, F.; Chen, Y.C.; Lloyd, H.O.; Kim, H.H.; Cannata, J.M.; Shung, K.K.; Coleman, D.J. High-resolution photoacoustic imaging of ocular tissues. Ultrasound Med. Biol. 2010, 36, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Puliafito, C.A.; Jiao, S. Photoacoustic ophthalmoscopy for in vivo retinal imaging: Current status and prospects. Opt. Express 2010, 18, 3967–3972. [Google Scholar] [CrossRef] [Green Version]
- De la Zerda, A.; Paulus, Y.M.; Teed, R.; Bodapati, S.; Dollberg, Y.; Khuri-Yakub, B.T.; Blumenkranz, M.S.; Moshfeghi, D.M.; Gambhir, S.S. Photoacoustic ocular imaging. Opt. Lett. 2010, 35, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Ye, S.; Ren, Q.; Li, C. High-resolution dual-modality photoacoustic ocular imaging. Opt. Lett. 2014, 39, 2451–2454. [Google Scholar] [CrossRef]
- Hu, S.; Rao, B.; Maslov, K.; Wang, L.V. Label-free photoacoustic ophthalmic angiography. Opt. Lett. 2010, 35, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Schultz, K.M.; Zhang, K.; Sasman, A.; Gao, F.; Kume, T.; Zhang, H.F. In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics 2014, 2, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Dewhurst, R.J. Photoacoustic imaging in both soft and hard biological tissue. J. Phys. Conf. Ser. 2010, 214, 012028. [Google Scholar] [CrossRef]
- Hughes, D.A.; Sampathkumar, A.; Longbottom, C.; Kirk, K.J. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope. J. Phys. Conf. Ser. 2015, 581, 012002. [Google Scholar] [CrossRef] [Green Version]
- Olivi, G.; DiVito, E.; Peters, O.; Kaitsas, V.; Angiero, F.; Signore, A.; Benedicenti, S. Disinfection efficacy of photon-induced photoacoustic streaming on root canals infected with Enterococcus faecalis. J. Am. Dent. Assoc. 2014, 145, 843–848. [Google Scholar] [CrossRef]
- Silva, E.; Miranda, E.; Mota, C.; Das, A.; Gomes, A. Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range. Imaging Sci. Dent. 2021, 51, 107–115. [Google Scholar] [CrossRef]
- Rattanapak, T.; Birchall, J.; Young, K.; Ishii, M.; Meglinski, I.; Rades, T.; Hook, S. Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J. Control. Release 2013, 172, 894–903. [Google Scholar] [CrossRef]
- Kamali, T.; Doronin, A.; Rattanapak, T.; Hook, S.; Meglinski, I. Assessment of transcutaneous vaccine delivery by optical coherence tomography. Laser Phys. Lett. 2012, 9, 607–610. [Google Scholar] [CrossRef]
- Peña, A.; Doronin, A.; Tuchin, V.; Meglinski, I. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography. J. Biomed. Opt. 2014, 19, 086002. [Google Scholar] [CrossRef]
- Meglinskii, I.V.; Bashkatov, A.N.; Genina, E.A.; Churnakov, D.Y.; Tuchin, V.V. Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers. Quantum Electron. 2002, 32, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Genina, E.A.; Bashkatov, A.N.; Tuchin, V.V. Tissue optical immersion clearing. Expert Rev. Med. Devices 2010, 6, 825–842. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yao, J.; Wang, L.V. Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth. Opt. Lett. 2013, 38, 2592–2595. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Zhu, D.; Shi, R.; Luo, Q. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime. Opt. Lett. 2013, 38, 4236–4239. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Zhu, D.; Shi, R.; Luo, Q. Dynamic monitoring of optical clearing of skin using photoacoustic microscopy and ultrasonography. Opt. Express 2014, 22, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Juratli, M.A.; Sarimollaoglu, M.; Siegel, E.R.; Nedosekin, D.; Galanzha, E.I.; Suen, J.Y.; Zharov, V. Real-time monitoring of circulating tumor cell release during tumor manipulation using in vivo photoacoustic and fluorescent flow cytometry. Head Neck 2014, 36, 1207–1215. [Google Scholar] [CrossRef]
- Galanzha, E.; Zharov, V.P. Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 2013, 5, 1691–1738. [Google Scholar] [CrossRef] [Green Version]
- Galanzha, E.I.; Menyaev, Y.A.; Yadem, A.C.; Sarimollaoglu, M.; Juratli, M.A.; Nedosekin, D.A.; Foster, S.R.; Jamshidi-Parsian, A.; Siegel, E.R.; Makhoul, I.; et al. In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma. Sci. Transl. Med. 2019, 11, eaat5857. [Google Scholar] [CrossRef]
- Gröhl, J.; Schellenberg, M.; Dreher, K.; Maier-Hein, L. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics 2021, 22, 100241. [Google Scholar] [CrossRef]
- Fatima, A.; Kratkiewicz, K.; Manwar, R.; Zafar, M.; Zhang, R.; Huang, B.; Dadashzadeh, N.; Xia, J.; Avanaki, K. Review of cost reduction methods in photoacoustic computed tomography. Photoacoustics 2019, 15, 100137. [Google Scholar] [CrossRef]
- Hernández, A.C.; Domínguez-Pacheco, F.A.; Cruz-Orea, A.; Herrera, C.A.; Gutierrez, C.D.; Zepeda, B.R.; Ramírez, M.E. Optical absorption coefficient of different tortillas by photoacoustic spectroscopy. Afr. J. Biotechnol. 2012, 11, 15916–15922. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.R.; Aguilar, C.H.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Bonilla, J.L.L. Characterization of maize grains with different pigmentation investigated by photoacoustic spectroscopy. Int. J. Thermophys. 2014, 35, 1933–1939. [Google Scholar] [CrossRef]
- Zhao, Z.; Myllylä, T. Recent Technical Progression in Photoacoustic Imaging—Towards Using Contrast Agents and Multimodal Techniques. Appl. Sci. 2021, 11, 9804. [Google Scholar] [CrossRef]
Tecnology Parameters | Application Parameters | |||||
---|---|---|---|---|---|---|
Contrast * | Sensitivity | Resolution (mm) | Throughput Capacity | Easiness of Use * | Penetration Depth * | |
MSOT | E | pmol | 0.05 | High | E | A |
X-ray | P | mol | 0.05 | High | E | E |
XrayCT | S | mol | 0.05 | Low | G | E |
MRI | E | nmol | 0.05 | Low | A | E |
US | P | nmol | 0.05 | Medium | E | A |
PET | E | fmol | 1–2 | Low | S | E |
SPECT | E | fmol | 1–2 | Low | S | E |
Optical | G | pmol | 1–2 | Medium | E | P |
Modality | Penetration Depth (mm) | Lateral Resolution (mm) | Axial Resolution (mm) | Application |
---|---|---|---|---|
PACT | 50 | 0.7 | 0.7 | Peripheral joints, brain, whole-body study |
MSOT | 10–50 | 0.15 | 0.5 | Real-time, whole-body tomography with body navigations |
PAM | 3 | 0.045 | 0.015 | Molecular or cellular imaging |
PAFC | 2–4 | 0.002 | 0.033 | Circulating tumor cells detection |
PAE | <60 | 0.02–0.3 | 0.1 | Gastrointestinal or cardiovascular imaging |
Comparison of Intravascular Imaging Techniques for Characterization of Atherosclerotic Plaques | ||||
---|---|---|---|---|
Physical Property | Technique | Resolution (mm) | Penetration (mm) | Specialized Lipid Imaging Capability |
Acoustic | IVUS | 0.1 | 8–10 | NA |
IVUS-RF analysis | 0.1–0.2 | 8–10 | Poor | |
Light scattering/absorbance | OCT | 0.004–0.02 | 0.001–0.002 | NA |
NIRS | NA | 0.001–0.002 | Good | |
Photoacoustic | IVPAT | 0.1 | 0.002–0.004 | Good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neprokin, A.; Broadway, C.; Myllylä, T.; Bykov, A.; Meglinski, I. Photoacoustic Imaging in Biomedicine and Life Sciences. Life 2022, 12, 588. https://doi.org/10.3390/life12040588
Neprokin A, Broadway C, Myllylä T, Bykov A, Meglinski I. Photoacoustic Imaging in Biomedicine and Life Sciences. Life. 2022; 12(4):588. https://doi.org/10.3390/life12040588
Chicago/Turabian StyleNeprokin, Alexey, Christian Broadway, Teemu Myllylä, Alexander Bykov, and Igor Meglinski. 2022. "Photoacoustic Imaging in Biomedicine and Life Sciences" Life 12, no. 4: 588. https://doi.org/10.3390/life12040588
APA StyleNeprokin, A., Broadway, C., Myllylä, T., Bykov, A., & Meglinski, I. (2022). Photoacoustic Imaging in Biomedicine and Life Sciences. Life, 12(4), 588. https://doi.org/10.3390/life12040588