The Effect of Sunscreens on the Skin Barrier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Sunscreen
- Full-body sunscreen (applied on the volar forearm): Anthelios Spray Invisible spf50+ Broad spectrum UVA/UVB B;
- Facial sunscreen 1: Anthelios Age Correct spf50+ designed against UVB/UVA, IR-A rays, contains Fragmented Hyaluronic Acid + Phe-Resorcinol + Niacinamide;
- Facial sunscreen 2: UVMUNE40 Crema Hidratante spf50+ broad spectrum ULTRA-LONG UVA/UVA/UVB;
- Facial sunscreen 3: Hyalu B5 Aquagel spf30+, moisturizing gel containing pure Hyaluronic Acid, Vitamin B5, Vitamin E (Antioxidant Complex) and Thermal Spring Water.
2.4. Variables
- Transepidermal water-loss (TEWL) in g·m−2·h−1: using the Tewameter® TM 300 (open chamber) which indirectly calculates TEWL by analyzing water evaporation using diffusion principles.
- Stratum-corneum hydration (SCH), in arbitrary units (AU), using the Corneometer® CM 825. It measures hydration based on the measurement of the capacitance of a dielectric medium. The probe emits an electric field that penetrates the skin and determines the dielectric constant of the water.
- Skin temperature: measured in °C, using the Skin Thermometer ST 500: the principle is based on the measurement of the infrared radiation emitted by the skin, an indicator of the skin’s microcirculation.
- Skin’s pH: measured in pH units, using the Skin-pH-Meter PH 905. This probe consists of a rod with a buffer liquid inside that acts as an electrode, allowing the identification of the potential difference between the solution inside the rod and the skin surface.
- Skin elasticity by means of the R2 value measured in %, using the Cut-ometer® Dual MPA 580, based on the suction and relaxation method. The probe generates a negative pressure by suctioning the skin into an opening present in the probe, and an optical system is used to measure how much skin penetrates into it. The results evaluate the skin’s resistance to suction, i.e., firmness, and the ability to recover its original state (elasticity).
- Erythema and melanin index: in AU, using the Mexameter® MX 18 by means of the MPA multiple probe adapter: it allows measurement of the two components mainly responsible for skin color: melanin and hemoglobin (erythema). The process is based on a light absorption/reflection principle, using a sensor that emits light at three specific wavelengths, and the receiver measures the light reflected by the skin. By defining the amount of light that is emitted, it is possible to calculate the amount of light that has been absorbed by the skin.
2.5. Statistical Analysis
3. Results
3.1. Changes in Skin-Barrier Function with a Full-Body Sunscreen
3.2. Changes in Skin-Barrier Function with Facial Sunscreens
3.3. The Impact of Sex on Skin-Barrier Function Using Sunscreens
3.4. The Impact of Age on Skin-Barrier Function Using Sunscreens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cribier, B. Histología de la piel normal y lesiones histopatológicas elementales. EMC-Dermatol. 2021, 55, 1–14. [Google Scholar] [CrossRef]
- Blanpain, C.; Fuchs, E. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 2009, 10, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stengel, F. Homeostasis in Topical Photoprotection: Getting the Spectral Balance Right. Am. J. Clin. Dermatol. 2018, 19, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D'Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miksa, S.; Lutz, D.; Guy, C.; Delamour, E. Sunscreen sun protection factor claim based on in vivo interlaboratory variability. Int. J. Cosmet. Sci. 2016, 38, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caetano, J.P.S.; Abarca, A.P.; Guerato, M.; Guerra, L.; Schalka, S.; Simão, D.C.P.; Vila, R. SPF and UVA-PF sunscreen evaluation: Are there good correlations among results obtained in vivo, in vitro and in a theoretical Sunscreen Simulator? A real-life exercise. Int. J. Cosmet. Sci. 2016, 38, 576–580. [Google Scholar] [CrossRef]
- Maroto-Morales, D.; Montero-Vilchez, T.; Arias-Santiago, S. Study of Skin Barrier Function in Psoriasis: The Impact of Emollients. Life 2021, 11, 651. [Google Scholar] [CrossRef]
- Ou-Yang, H.; Meyer, K.; Houser, T.; Grove, G. Sunscreen formulations do not interfere with sweat cooling during exercise. Int. J. Cosmet. Sci. 2018, 40, 87–92. [Google Scholar] [CrossRef]
- Lee, C.M.; Jin, S.-P.; Doh, E.J.; Lee, D.H.; Chung, J.H. Regional Variation of Human Skin Surface Temperature. Ann. Dermatol. 2019, 31, 349–352. [Google Scholar] [CrossRef]
- Benedict, F.G.; Miles, W.R.; Johnson, A. The Temperature of the Human Skin. Proc. Natl. Acad. Sci. USA 1919, 5, 218–222. [Google Scholar] [CrossRef]
- Nedelec, B.; Forget, N.J.; Hurtubise, T.; Cimino, S.; De Muszka, F.; Legault, A.; Liu, W.L.; De Oliveira, A.C.M.T.G.; Calva, V.; Correa, J.A. Skin characteristics: Normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations. Ski Res. Technol. 2016, 22, 263–275. [Google Scholar] [CrossRef]
- Espinosa-Rueda, M.I.; Montero-Vilchez, T.; Martinez-Lopez, A.; Molina-Leyva, A.; Sierra-Sánchez, A.; Arias-Santiago, S.; Buendia-Eisman, A. Cutaneous homeostasis and epidermal barrier function in a young healthy Caucasian population. Eur. J. Dermatol. 2021, 31, 176–182. [Google Scholar] [CrossRef]
- Angelova-Fischer, I. Irritants and Skin Barrier Function. Curr. Probl. Dermatol. 2016, 49, 80–89. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Blaak, J.; Staib, P. The Relation of pH and Skin Cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Cuenca-Barrales, C.; Rodriguez-Pozo, J.-A.; Diaz-Calvillo, P.; Tercedor-Sanchez, J.; Martinez-Lopez, A.; Molina-Leyva, A.; Arias-Santiago, S. Epidermal Barrier Function and Skin Homeostasis in Atopic Dermatitis: The Impact of Age. Life 2022, 12, 132. [Google Scholar] [CrossRef]
- Akdeniz, M.; Gabriel, S.; Lichterfeld-Kottner, A.; Blume-Peytavi, U.; Kottner, J. Transepidermal water loss in healthy adults: A systematic review and meta-analysis update. Br. J. Dermatol. 2018, 179, 1049–1055. [Google Scholar] [CrossRef]
- Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol. Alergol. 2016, 33, 48037. [Google Scholar] [CrossRef]
- Alexander, H.; Brown, S.; Danby, S.; Flohr, C. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Investig. Dermatol. 2018, 138, 2295–2300.e1. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Chung, W.-Y. Monitoring Transepidermal Water Loss and Skin Wettedness Factor with Battery-Free NFC Sensor. Sensors 2020, 20, 5549. [Google Scholar] [CrossRef]
- Kottner, J.; Lichterfeld, A.; Blume-Peytavi, U. Transepidermal water loss in young and aged healthy humans: A systematic review and meta-analysis. Arch. Dermatol. Res. 2013, 305, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Vogt, A. Transepidermal water loss. In Textbook of Cosmetic Dermatology, 5th ed.; Baran, R.M.H., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 28–31. [Google Scholar]
- Zhou, M.; Gan, Y.; Yang, M.; He, C.; Jia, Y. Lipidomics analysis of facial skin surface lipids between forehead and cheek: Association between lipidome, TEWL, and pH. J. Cosmet. Dermatol. 2020, 19, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, J.; Stefaniak, A.; Eloff, F.; John, S.; Agner, T.; Chou, T.-C.; Nixon, R.; Steiner, M.; Franken, A.; Kudla, I.; et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: Part 2. transepidermal water loss and skin hydration. Skin Res. Technol. 2013, 19, 265–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algiert-Zielińska, B.; Batory, M.; Skubalski, J.; Rotsztejn, H. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH. Int. J. Dermatol. 2017, 56, 1192–1197. [Google Scholar] [CrossRef]
- Tagami, H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int. J. Cosmet. Sci. 2008, 30, 413–434. [Google Scholar] [CrossRef]
- Ye, L.; Wang, Z.; Li, Z.; Lv, C.; Man, M.-Q. Validation of GPSkin Barrier® for assessing epidermal permeability barrier function and stratum corneum hydration in humans. Ski Res. Technol. 2019, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.A.; Kim, E.J.; Lee, H.K. Use of SkinFibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscanner. Ski Res. Technol. 2018, 24, 466–471. [Google Scholar] [CrossRef]
- Westermann, T.V.A.; Viana, V.R.; Junior, C.B.; Da Silva, C.B.D.; Carvalho, E.L.S.; Pupe, C.G. Measurement of skin hydration with a portable device (SkinUp ® Beauty Device) and comparison with the Corneometer ®. Ski Res. Technol. 2020, 26, 571–576. [Google Scholar] [CrossRef]
- Hong, C.; Schachter, J.; Sutton, A.B.; Salsberg, J.M.; Li, M.K.; Humphrey, S.D.; Dayeh, N.R. 89% Vichy mineralizing water with hyaluronic acid is a well-tolerated adjunct treatment that helps restore skin barrier function in dry skin-related inflammatory dermatoses and post-procedure skin care: A Canadian study. J. Cosmet. Dermatol. 2021, 20, 2148–2155. [Google Scholar] [CrossRef]
Variables | Participants (N = 51) |
---|---|
Age | 41.63 (16.45 SD) |
Sex
| 37 (72.5%) 14 (27.5%) |
Phototype
| 4 (7.8%) 27 (52.9%) 18 (35.3%) 2 (3.9%) |
Smoking habit (YES) | 12 (23.5%) |
Alcohol habit (YES) | 2 (3.9%) |
Mosturizing (0–7 times/week)
| 16 (31.4%) 1 (2%) 3 (5.9%) 2 (3.9%) 24 (47.1%) |
Solar exposure (hours/week)
| 21 (41.17%) 30 (58.83%) |
Use of photoprotectors
| 13 (25.5%) 24 (47.1%) 14(27.5%) |
Homeostasis Parameters | Initial Forearm Measurement | Final Forearm Measurement (without Cream) | p | Forearm with Cream | p | Inicial Cheek Measurement | Final Cheek Measurement (without Cream) | p | Cheek with Cream 1 | p | Cheek with Cream 2 | p | Cheek with Cream 3 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 30.71 | 31.11 | 0.050 | 31.39 | 0.000 | 32.18 | 32.24 | 0.074 | 32.79 | 0.000 | 32.85 | 0.000 | 33.32 | 0.000 |
Melanin (AU) | 113.23 | 115.22 | 0.167 | 102.28 | 0.000 | 136.11 | 134.59 | 0.458 | 130.59 | 0.088 | 120.85 | 0.000 | 129.68 | 0.065 |
Erythema (AU) | 206.18 | 203.75 | 0.606 | 177.39 | 0.000 | 357.74 | 358.46 | 0.899 | 337.87 | 0.009 | 319.13 | 0.000 | 322.03 | 0.000 |
pH | 5.15 | 5.25 | 0.050 | 5.32 | 0.006 | 5.14 | 5.21 | 0.074 | 5.26 | 0.016 | 5.56 | 0.000 | 5.59 | 0.000 |
TEWL (g·m−2·h−1) | 7.76 | 8.32 | 0.069 | 7.66 | 0.724 | 8.59 | 9.43 | 0.039 | 9.39 | 0.039 | 10.52 | 0.000 | 10.88 | 0.000 |
SCH (AU) | 48.91 | 50.99 | 0.056 | 61.81 | 0.000 | 63.99 | 65.57 | 0.050 | 58.36 | 0.009 | 53.19 | 0.000 | 53.33 | 0.000 |
Elasticity (%) | 0.723 | 0.731 | 0.504 | 0.701 | 0.039 | 0.528 | 0.537 | 0.596 | 0.587 | 0.006 | 0.6522 | 0.000 | 0.6778 | 0.000 |
Homeostasis Parameters | Forearm Increase without Cream in Men | Forearm Increase without Cream in Women | p | Forearm Increase with Cream in Men | Forearm Increase with Cream in Women | p |
---|---|---|---|---|---|---|
Temperature (°C) | −0.57 | −0.34 | 0.286 | −0.65 | −0.70 | 0.826 |
Melanin (AU) | +0.34 | −2.86 | 0.319 | +13.33 | +10.04 | 0.531 |
Erythema (AU) | +1.77 | +2.68 | 0.735 | +41.30 | +24.06 | 0.135 |
pH | −0.16 | −0.073 | 0.979 | −0.42 | −0.07 | 0.005 |
TEWL (g·m−2·h−1) | −0.78 | −0.48 | 0.775 | −0.86 | +0.46 | 0.039 |
SCH (AU) | −3.37 | −1.60 | 0.922 | −18.49 | −10.79 | 0.012 |
Elasticity (%) | −0.017 | −0.005 | 0.567 | −0.004 | +0.031 | 0.125 |
Homeostasis Parameters | Face Increase without Cream in Men | Face Increase without Cream in Women | p | Face Increase with Cream 1 in Men | Face Increase with Cream 1 in Women | p | Face Increase with Cream 2 in Men | Face Increase with Cream 2 in Women | p | Face Increase with Cream 3 in Men | Face Increase with Cream 3 in Women | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | −0.43 | −0.48 | 0.844 | −0.47 | −0.53 | 0.833 | −0.7 | −0.66 | 0.880 | −0.89 | −1.24 | 0.232 |
Melanin (AU) | +5.94 | −0.16 | 0.182 | +13.05 | +2.7 | 0.146 | +14.51 | +15.55 | 0.890 | +13.27 | +3.84 | 0.219 |
Erythema (AU) | −9.41 | +2.58 | 0.344 | +31.75 | +15.38 | 0.320 | +43.11 | +36.91 | 0.736 | +56.01 | +28.04 | 0.194 |
pH | −0.08 | −0.06 | 0.882 | −0.26 | −0.07 | 0.084 | −0.49 | −0.39 | 0.387 | −0.51 | −0.51 | 0.645 |
TEWL (g·m−2·h−1) | −1.53 | −0.59 | 0.096 | −1.05 | −0.58 | 0.530 | −1.88 | −1.95 | 0.930 | −2.28 | −2.3 | 0.978 |
SCH (AU) | −2.85 | −1.08 | 0.315 | −0.97 | +8.14 | 0.048 | +5.81 | +12.70 | 0.167 | +11.75 | +10.28 | 0.815 |
Elasticity (%) | −0.046 | +0.005 | 0.192 | −0.079 | −0.043 | 0.474 | −0.129 | −0.124 | 0.913 | −0.15 | −0.143 | 0.906 |
Homeostasis Parameters | Forearm Increase without Cream in People ≥40 Years Old | Forearm Increase without Cream in People <40 Years Old | p | Forearm Increase with Cream in People ≥40 Years Old | Forearm Increase with Cream in People <40 Years Old | p |
---|---|---|---|---|---|---|
Temperature (°C) | −0.35 | −0.46 | 0.572 | −0.69 | −0.6778 | 0.929 |
Melanin (AU) | +0.01 | −3.75 | 0.189 | +10.32 | +11.50 | 0.802 |
Erythema (AU) | −0.57 | +5.09 | 0.552 | +16.85 | +39.41 | 0.027 |
pH | +0.028 | −0.21 | 0.005 | −0.06 | −0.26 | 0.076 |
TEWL (g·m−2·h−1) | −0.67 | −0.46 | 0.739 | +0.06 | +0.14 | 0.888 |
SCH (AU) | −1.91 | −2.24 | 0.870 | −11.33 | −14.30 | 0.292 |
Elasticity (%) | +0.015 | −0.09 | 0.521 | +0.031 | +0.013 | 0.367 |
Homeostasis Parameters | Face Increase without Cream in People ≥40 Years Old | Face Increase without Cream in People <40 Years Old | p | Face Increase with Cream 1 in People ≥40 Years Old | Face Increase with Cream 1 in People <40 Years Old | p | Face Increase with Cream 2 in People ≥40 Years Old | Face Increase with Cream 2 in People <40 Years Old | p | Face Increase with Cream 3 in People ≥40 Years Old | Face Increase with Cream 2 in People <40 Years Old | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | −0.51 | −0.42 | 0.687 | −0.44 | −0.58 | 0.551 | −0.58 | −0.7519 | 0.472 | −1.04 | −1.24 | 0.436 |
Melanin (AU) | +1.67 | +1.38 | 0.944 | +7.73 | 3.6 | 0.518 | +16.49 | +14.17 | 0.729 | +8.58 | +4.51 | 0.556 |
Erythema (AU) | +2.62 | −3.67 | 0.579 | +13.69 | 25.38 | 0.427 | +39.89 | +37.48 | 0.883 | +20.88 | +48.89 | 0.145 |
pH | −0.014 | −0.12 | 0.176 | −0.10 | −0.13 | 0.769 | −0.40 | −0.44 | 0.712 | −0.42 | −0.5 | 0.502 |
TEWL (g·m−2·h−1) | −0.66 | −1.01 | 0.493 | −0.75 | −0.7 | 0.893 | −1.92 | −1.94 | 0.987 | −2.52 | −2.09 | 0.544 |
SCH (AU) | −0.99 | −2.08 | 0.499 | +5.18 | 6.04 | 0.838 | +9.55 | +11.93 | 0.597 | +5.89 | +14.94 | 0.104 |
Elasticity (%) | +0.03 | −0.040 | 0.043 | −0.0167 | −0.09 | 0.117 | −0.10 | −0.14 | 0.332 | −0.088 | −0.196 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Bravo, A.; Montero-Vilchez, T.; Arias-Santiago, S.; Buendia-Eisman, A. The Effect of Sunscreens on the Skin Barrier. Life 2022, 12, 2083. https://doi.org/10.3390/life12122083
Gonzalez-Bravo A, Montero-Vilchez T, Arias-Santiago S, Buendia-Eisman A. The Effect of Sunscreens on the Skin Barrier. Life. 2022; 12(12):2083. https://doi.org/10.3390/life12122083
Chicago/Turabian StyleGonzalez-Bravo, Alicia, Trinidad Montero-Vilchez, Salvador Arias-Santiago, and Agustin Buendia-Eisman. 2022. "The Effect of Sunscreens on the Skin Barrier" Life 12, no. 12: 2083. https://doi.org/10.3390/life12122083
APA StyleGonzalez-Bravo, A., Montero-Vilchez, T., Arias-Santiago, S., & Buendia-Eisman, A. (2022). The Effect of Sunscreens on the Skin Barrier. Life, 12(12), 2083. https://doi.org/10.3390/life12122083