Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
- Analytical techniques
- Zetaeta potential of NDs
- Synthesis of ND@ENE PMO core–shell NPs
- Direct grafting of 6-{2-[2-(2-Methoxy-ethoxy) ethoxy]ethoxy}hexyl)triethoxysilane(PEG-Si) and 11-aminoundecyltriethoxysilane (AUTES)
- Biological studies of NDs and multifunctional ND@ENE NPs
- Cell line
- Cell internalization study using confocal microscopy
- Two-photon-excited photodynamic therapy
3. Results and Discussion
3.1. Nanodiamond Characterization
3.2. Syntheses of ND@PMO Nanoparticles and Associated Grafting Strategy
3.3. Biological Studies of Functionalized ND@ENE Nanoparticles
3.3.1. TPEF Imaging of NDs and ND@ENE
3.3.2. Phototoxicity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Bondon, N.; Raehm, L.; Charnay, C.; Boukherroub, R.; Durand, J.-O. Nanodiamonds for bioapplications, recent developments. J. Mater. Chem. B 2020, 8, 10878–10896. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.S.; Wang, Z.Z.; Wang, P.W.; Chen, F.; Luo, X.L. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diam. Relat. Mater. 2022, 123, 108831. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Zhao, Q.; Shi, Y.; Gao, G.; Zhi, J. Nanodiamond-based photosensitizer: Enhancing photodynamic therapy and inhibiting tumor metastasis. Carbon 2021, 174, 90–97. [Google Scholar] [CrossRef]
- Mauriello Jimenez, C.; Knezevic, N.Z.; Rubio, Y.G.; Szunerits, S.; Boukherroub, R.; Teodorescu, F.; Croissant, J.G.; Hocine, O.; Seric, M.; Raehm, L.; et al. Nanodiamond-periodic mesoporous organosilica nanoparticles (PMO) for two-photon photodynamic therapy (PDT) and drug delivery. J. Mater. Chem. B 2016, 4, 5803–5808. [Google Scholar] [CrossRef]
- Matshitse, R.; Managa, M.; Nyokong, T. The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots. Diam. Relat. Mater. 2020, 101, 107617. [Google Scholar] [CrossRef]
- Matshitse, R.; Ngoy, B.P.; Managa, M.; Mack, J.; Nyokong, T. Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies. Photodiagnosis Photodyn. Ther. 2019, 26, 101–110. [Google Scholar] [CrossRef]
- Ryu, T.K.; Baek, S.W.; Kang, R.H.; Jeong, K.Y.; Jun, D.R.; Choi, S.W. Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. J. Control. Release 2018, 270, 237–245. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Q.; Wu, M.; Wang, S.; Xu, P.; Chen, H.; Li, Y.; Zhang, L.; Wang, L.; Shi, J. Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. J. Am. Chem. Soc. 2014, 136, 16326–16334. [Google Scholar] [CrossRef]
- Fatieiev, Y.; Croissant, J.G.; Alamoudi, K.; Khashab, N.M. Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem 2017, 82, 631–637. [Google Scholar] [CrossRef]
- Davies, G.; Hamer, M.F. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1976, 348, 285–298. [Google Scholar] [CrossRef]
- Ma, Y.; Rohlfing, M.; Gali, A. Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys. Rev. B 2010, 81, 041204. [Google Scholar] [CrossRef]
- Nam, J.S.; Hong, Y.; Lee, C.G.; Kim, T.I.; Lee, C.; Roh, D.-H.; Lee, I.S.; Kweon, S.; Ahn, G.; Min, S.K.; et al. Singlet Oxygen Generation from Polyaminoglycerol by Spin-Flip-Based Electron Transfer. JACS Au 2022, 2, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.; Salles, D.; Maynadier, M.; Mongin, O.; Hugues, V.; Banchard-Desce, M.; Cattoen, X.; Man, M.W.C.; Gallud, A.; Garcia, M.; et al. Mixed Periodic Mesoporous Organosilica Nanoparticles and Core-Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery. Chem. Mater. 2014, 26, 7214–7220. [Google Scholar] [CrossRef]
- Liu, W.; Tian, Y.; Zhang, Y.; Liu, K.; Zhao, S.; Zhang, J.; Su, Y.; Zhao, Y.; Tang, Y.; Sun, J.; et al. Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. J. Mater. Chem. B 2018, 6, 3865–3875. [Google Scholar] [CrossRef]
- Plakhotnik, T.; Aman, H. NV-centers in nanodiamonds: How good they are. Diam. Relat. Mater. 2018, 82, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew. Chem. Int. Ed. 2019, 58, 17918. [Google Scholar] [CrossRef]
- Neburkova, J.; Vavra, J.; Cigler, P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 43–53. [Google Scholar] [CrossRef]
- Szunerits, S.; Barras, A.; Boukherroub, R. Antibacterial Applications of Nanodiamonds. Int. J. Environ. Res. Public Health 2016, 13, 413. [Google Scholar] [CrossRef]
- Khanal, M.; Turcheniuk, V.; Barras, A.; Rosay, E.; Bande, O.; Siriwardena, A.; Zaitsev, V.; Pan, G.-H.; Boukherroub, R.; Szunerits, S. Toward Multifunctional “Clickable” Diamond Nanoparticles. Langmuir 2015, 31, 3926–3933. [Google Scholar] [CrossRef]
- Khanal, M.; Vausselin, T.; Barras, A.; Bande, O.; Turcheniuk, K.; Benazza, M.; Zaitsev, V.; Teodorescu, C.M.; Boukherroub, R.; Siriwardena, A.; et al. Phenylboronic-Acid-Modified Nanoparticles: Potential Antiviral Therapeutics. ACS Appl. Mater. Interfaces 2013, 5, 12488–12498. [Google Scholar] [CrossRef] [PubMed]
- Desai, C.; Chen, K.; Mitra, S. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment. Environ. Sci. Process. Impacts 2014, 16, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Bumb, A.; Sarkar, S.K.; Billington, N.; Brechbiel, M.W.; Neuman, K.C. Silica Encapsulation of Fluorescent Nanodiamonds for Colloidal Stability and Facile Surface Functionalization. J. Am. Chem. Soc. 2013, 135, 7815–7818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Haartman, E.; Jiang, H.; Khomich, A.A.; Zhang, J.; Burikov, S.A.; Dolenko, T.A.; Ruokolainen, J.; Gu, H.; Shenderova, O.A.; Vlasov, I.I.; et al. Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: Fabrication. J. Mater. Chem. B 2013, 1, 2358. [Google Scholar] [CrossRef] [PubMed]
Samples | Statistical Size (Number) | Average Size (Intensity) | PDI |
---|---|---|---|
FND100 | 107 ± 32 | 231 | 0.27 |
DND30 | 36 ± 16 | 88 | 0.18 |
Samples | pH 4 | pH 8 | pH 11 |
---|---|---|---|
FND100 | −11.3 ± 0.3 | −12.2 ± 0.2 | −15.6 ± 0.7 |
DND30 | +36.6 ± 0.6 | +33.4 ± 1.0 | −5.4 ± 0.3 |
Core–Shell NPs | Statistical Size a (Intensity) | Average Size b (Intensity) | PDI | TEM c |
---|---|---|---|---|
FND100@ENE@PEG/AUTES | 350 ± 40 | 339 | 0.11 | 137 ± 83 |
DND30@ENE@PEG/AUTES | 342 ± 50 | 323 | 0.14 | 147 ± 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondon, N.; Durand, D.; Hadj-Kaddour, K.; Ali, L.M.A.; Boukherroub, R.; Bettache, N.; Gary-Bobo, M.; Raehm, L.; Durand, J.-O.; Nguyen, C.; et al. Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy. Life 2022, 12, 2044. https://doi.org/10.3390/life12122044
Bondon N, Durand D, Hadj-Kaddour K, Ali LMA, Boukherroub R, Bettache N, Gary-Bobo M, Raehm L, Durand J-O, Nguyen C, et al. Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy. Life. 2022; 12(12):2044. https://doi.org/10.3390/life12122044
Chicago/Turabian StyleBondon, Nicolas, Denis Durand, Kamel Hadj-Kaddour, Lamiaa M. A. Ali, Rabah Boukherroub, Nadir Bettache, Magali Gary-Bobo, Laurence Raehm, Jean-Olivier Durand, Christophe Nguyen, and et al. 2022. "Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy" Life 12, no. 12: 2044. https://doi.org/10.3390/life12122044
APA StyleBondon, N., Durand, D., Hadj-Kaddour, K., Ali, L. M. A., Boukherroub, R., Bettache, N., Gary-Bobo, M., Raehm, L., Durand, J.-O., Nguyen, C., & Charnay, C. (2022). Photosensitivity of Different Nanodiamond–PMO Nanoparticles in Two-Photon-Excited Photodynamic Therapy. Life, 12(12), 2044. https://doi.org/10.3390/life12122044