Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Eligibility Criteria and Study Sample
- Nmin-minimum sample size;
- NP-the size of the population from which the sample is drawn;
- α-confidence level for the results;
- f-the size of the fraction; e-assumed maximum error.
2.3. Ethical Approval
2.4. Research Tool
2.5. Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, Y.S.; Kumar, N.; Sircar, S.; Kaushik, R.; Bhat, S.; Dhama, K.; Gupta, P.; Goyal, K.; Singh, M.P.; Ghoshal, U.; et al. Coronavirus Disease Pandemic (COVID-19): Challenges and a Global Perspective. Pathogens 2020, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.; Weber, K.S.; Johnson, S.M. Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. Int. J. Mol. Sci. 2020, 21, 8462. [Google Scholar] [CrossRef] [PubMed]
- Vetvicka, V.; Sima, P.; Vannucci, L. Trained Immunity as an Adaptive Branch of Innate Immunity. Int. J. Mol. Sci. 2021, 22, 10684. [Google Scholar] [CrossRef]
- Wei, R.; Christakos, S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients 2015, 7, 8251–8260. [Google Scholar] [CrossRef] [Green Version]
- Harrell, C.R.; Djonov, V.; Volarevic, V. The Cross-Talk between Mesenchymal Stem Cells and Immune Cells in Tissue Repair and Regeneration. Int. J. Mol. Sci. 2021, 22, 2472. [Google Scholar] [CrossRef]
- Rusek, P.; Wala, M.; Druszczyńska, M.; Fol, M. Infectious Agents as Stimuli of Trained Innate Immunity. Int. J. Mol. Sci. 2018, 19, 456. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorczynski, R.M.; Lindley, R.A.; Steele, E.J.; Wickramasinghe, N.C. Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J. Pers. Med. 2021, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Thurm, C.; Schraven, B.; Kahlfuss, S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. Int. J. Mol. Sci. 2021, 22, 9186. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.S.; Valenzuela, P.L.; Castillo-García, A.; Butragueño, J.; Jiménez-Pavón, D.; Carrera-Bastos, P.; Lucia, A. The Exposome and Immune Health in Times of the COVID-19 Pandemic. Nutrients 2022, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients 2020, 12, 2633. [Google Scholar] [CrossRef]
- Park, S.; Zhang, T. A Positive Association of Overactivated Immunity with Metabolic Syndrome Risk and Mitigation of Its Association by a Plant-Based Diet and Physical Activity in a Large Cohort Study. Nutrients 2021, 13, 2308. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020, 14, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Gasbarrini, A.; Miggiano, G.A.D. The Role of Nutrition in the COVID-19 Pandemic. Nutrients 2021, 13, 1093. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Dalamitros, A.A.; Nikolaidis, P.A.; Hormeño-Holgado, A.; Tornero-Aguilera, J.F. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.M.; Ibrahim, S.; Zaim, A.; Ibrahim, W.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed. Pharmacother. 2021, 136, 111228. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Vetvicka, V.; Richterova, S.; Král, V. Nutrition, and Immunity during Pandemic Viral Infection. J. Nutr. Food Sci. Technol. 2021, 2, 1–6. [Google Scholar]
- Foolchand, A.; Ghazi, T.; Chuturgoon, A.A. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int. J. Mol. Sci. 2022, 23, 2654. [Google Scholar] [CrossRef] [PubMed]
- Skrajnowska, D.; Brumer, M.; Kankowska, S.; Matysek, M.; Miazio, N.; Bobrowska-Korczak, B. Covid 19: Diet Composition and Health. Nutrients 2021, 13, 2980. [Google Scholar] [CrossRef] [PubMed]
- Kladar, N.; Bijelić, K.; Gatarić, B.; Bubić Pajić, N.; Hitl, M. Phytotherapy and Dietotherapy of COVID-19-An Online Survey Results from Central Part of Balkan Peninsula. Healthcare 2022, 10, 1678. [Google Scholar] [CrossRef]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed]
- Vorland, C.J.; Bohan Brown, M.M.; Kyle, T.K.; Brown, A.W. Overstated Claims of Efficacy and Safety. Comment on: “Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect Against Viral Infections” Nutrients 2020, 12, 1181. Nutrients 2020, 12, 2690. [Google Scholar] [CrossRef] [PubMed]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Weyh, C.; Krüger, K.; Strasser, B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020, 12, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskal, M.; Michalska, G. Consumer preferences related to meat purchase and consumption. Wiadomości Zootech. 2017, 4, 10–21. [Google Scholar]
- Piejko, L.; Nawrat-Szołtysik, A.; Kopeć, D.; Broncel-Czekaj, D.; Nowak, Z. Diet quality and selected health behaviors of adults with type 2 diabetes mellitus. Forum Metab. Disord. 2018, 9, 36–44. [Google Scholar]
- National Center for Nutrition Education. Available online: https://ncez.pzh.gov.pl/wp-content/uploads/2021/10/Raport-z-projektu-EFSA-18.10.pdf (accessed on 1 June 2022).
- Batiha, G.E.-S.; Alqarni, M.; Awad, D.A.B.; Algammal, A.M.; Nyamota, R.; Wahed, M.I.I.; Shah, M.A.; Amin, M.N.; Adetuyi, B.O.; Hetta, H.F.; et al. Dairy-Derived and Egg White Proteins in Enhancing Immune System Against COVID-19. Front. Nutr. 2021, 8, 629440. [Google Scholar] [CrossRef]
- Cegielska-Radziejewska, R.; Szablewski, T.; Bochna, K.; Lasik, A.; Tomczyk, Ł. Consumer preferences for eggs in Greater Poland and a selected region of the Netherlands. Food Conscious Consum. 2016, 5, 64–72. [Google Scholar]
- Mohseni, H.; Amini, S.; Abiri, B.; Kalantar, M.; Kaydani, M.; Barati, B.; Pirabbasi, E.; Bahrami, F. Are history of dietary intake and food habits of patients with clinical symptoms of COVID 19 different from healthy controls? A case-control study. Clin. Nutr. ESPEN 2021, 42, 280–285. [Google Scholar] [CrossRef]
- Malczyk, E.; Zolotenka-Synowiec, M.; Całyniuk, B.; Malczyk, A.; Synowiec, J. Frequency of consumption of selected food products by students of Opole, Silesia and Lower Silesia universities. Nurs. Public Health 2017, 26, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Grębowiec, M.; Korytkowska, A. Consumer behavior in the market of dairy products. Sci. Yearb. Assoc. Agric. Agribus. Econ. 2017, 19, 79–85. [Google Scholar]
- Misiarz, M.; Grochowska-Niedworok, E.; Całyniuk, B.; Malczyk, E.; Zoloteńka-Synowiec, M. Frequency of consumption of selected foods by students of the State Higher Vocational School in Nysa in the aspect of the implementation of recommendations for rational nutrition. Nurs. Public Health 2015, 5, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef]
- Olearczyk, A.; Walewska-Zielecka, B. Impact of the COVID-19 pandemic on selected areas of health, lifestyle, and well-being of workers in Poland. Health Lifestyles 2021, 3, 59–68. [Google Scholar]
- Rzadkowolska, K. Eating behavior of students during remote learning. Soc. Educ. Lang. 2021, 14, 1–18. [Google Scholar]
- Fernández-Quintela, A.; Milton-Laskibar, I.; Trepiana, J.; Gómez-Zorita, S.; Kajarabille, N.; Léniz, A.; González, M.; Portillo, M.P. Key Aspects in Nutritional Management of COVID-19 Patients. J. Clin. Med. 2020, 9, 2589. [Google Scholar] [CrossRef]
- Caccialanza, R.; Laviano, A.; Lobascio, F.; Montagna, E.; Bruno, R.; Ludovisi, S.; Corsico, A.G.; Di Sabatino, A.; Belliato, M.; Calvi, M.; et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition 2020, 74, 110835. [Google Scholar] [CrossRef]
- Ferrara, F.; De Rosa, F.; Vitiello, A. The Central Role of Clinical Nutrition in COVID-19 Patients During and After Hospitalization in Intensive Care Unit. SN Compr. Clin. Med. 2020, 2, 1064–1068. [Google Scholar] [CrossRef]
- Oscanoa, T.J.; Amado, J.; Vidal, X.; Laird, E.; Ghashut, R.A.; Romero-Ortuno, R. The relationship between the severity and mortality of SARS-CoV-2 infection and 25-hydroxyvitamin D concentration—A meta-analysis. Adv. Respir. Med. 2021, 89, 145–157. [Google Scholar] [CrossRef]
- Wypych-Ślusarska, A.; Grot, M.; Nigowski, M. Behaviours to strengthen the immune system in the COVID-19 pandemic. Med. Srod. 2021, 24, 5–10. [Google Scholar] [CrossRef]
- Silberstein, M. Vitamin D: A simpler alternative to tocilizumab for trial in COVID-19? Med. Hypotheses 2020, 140, 109767. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Role of vitamin D in preventing COVID-19 infection, progression, and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.C.; Krznaric, Z.; Pirlich, M.; Singer, P. ESPEN expert statements and practical guidance for the nutritional management of individuals with SARS-CoV2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Wickam, A. Assessing selected aspects of the quality of life of young people after one year of the COVID-19 pandemic. Econ.-Wroc. Econ. Rev. 2021, 27, 47–59. [Google Scholar]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Jovic, T.H.; Ali, S.R.; Ibrahim, N.; Jessop, Z.M.; Tarassoli, S.P.; Dobbs, T.D.; Holford, P.; Thornton, C.A.; Whitaker, I.S. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020, 12, 2550. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, D.; Wang, L.; Zhao, Y.; Wei, L.; Chen, Z.; Yang, B. Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci. Rep. 2020, 40, BSR20202690. [Google Scholar] [CrossRef]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Pataka, A.; Kotoulas, S.; Sakka, E.; Katsaounou, P.; Pappa, S. Sleep Dysfunction in COVID-19 Patients: Prevalence, Risk Factors, Mechanisms, and Management. J. Pers. Med. 2021, 11, 1203. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. PTR 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Gerardi, C.; Uberti-Foppa, C.; Lopalco, L. Can Natural Polyphenols Help in Reducing Cytokine Storm in COVID-19 Patients? Molecules 2020, 25, 5888. [Google Scholar] [CrossRef] [PubMed]
- Gligorijevic, N.; Radomirovic, M.; Nedic, O.; Stojadinovic, M.; Khulal, U.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention. Int. J. Mol. Sci. 2021, 22, 12385. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Tazeddinova, D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat. Prod. Bioprospect. 2020, 10, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Samec, M.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Al-Ishaq, R.K.; Abotaleb, M.; Nosal, V.; Kajo, K.; Ashrafizadeh, M.; et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed. Pharmacother. 2021, 138, 111430. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Grant, W.B.; Frias-Toral, E.; Vetrani, C.; Verde, L.; de Alteriis, G.; Docimo, A.; Savastano, S.; Colao, A.; Muscogiuri, G. Dietary Recommendations for Post-COVID-19 Syndrome. Nutrients 2022, 14, 1305. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Alesi, S.; Villani, A.; Mantzioris, E.; Takele, W.W.; Cowan, S.; Moran, L.J. Anti-Inflammatory Diets in Fertility: An Evidence Review. Nutrients 2022, 14, 3914. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dooren, C. A Review of the Use of Linear Programming to Optimize Diets, Nutritiously, Economically and Environmentally. Front. Nutr. 2018, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scudiero, O.; Lombardo, B.; Brancaccio, M.; Mennitti, C.; Cesaro, A.; Fimiani, F.; Gentile, L.; Moscarella, E.; Amodio, F.; Ranieri, A.; et al. Exercise, Immune System, Nutrition, Respiratory and Cardiovascular Diseases during COVID-19: A Complex Combination. Int. J. Environ. Res. Public Health 2021, 18, 904. [Google Scholar] [CrossRef] [PubMed]
- Caprara, G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021, 13, 429. [Google Scholar] [CrossRef]
- National Center for Nutrition Education. Available online: https://ncez.pzh.gov.pl/aktywnosc-fizyczna/nowe-zalecenia-who-dotyczace-aktywnosci-fizycznej (accessed on 2 June 2022).
- Mucha, B.; Mucha, M. Physical activity in the era of the COVID-19 pandemic. Health Lifestyles 2021, 8, 385–397. [Google Scholar]
- TMGH-Global COVID-19 Collaborative. Psychological Impacts and Post-Traumatic Stress Disorder among People under COVID-19 Quarantine and Isolation: A Global Survey. Int. J. Environ. Res. Public Health 2021, 18, 5719. [Google Scholar] [CrossRef] [PubMed]
- Dymecka, J. Psychosocial effects of the COVID-19 pandemic. Neuropsychiatry Neuropsychol. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Ragnoli, B.; Pochetti, P.; Pignatti, P.; Barbieri, M.; Mondini, L.; Ruggero, L.; Trotta, L.; Montuschi, P.; Malerba, M. Sleep Deprivation, Immune Suppression and SARS-CoV-2 Infection. Int. J. Environ. Res. Public Health 2022, 19, 904. [Google Scholar] [CrossRef]
- Gruba, G.; Kasiak, P.S.; Gębarowska, J.; Adamczyk, N.; Sikora, Z.; Jodczyk, A.M.; Mamcarz, A.; Śliż, D. PaLS Study of Sleep Deprivation and Mental Health Consequences of the COVID-19 Pandemic among University Students: A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2021, 18, 9581. [Google Scholar] [CrossRef]
- Grajek, M.; Krupa-Kotara, K.; Rozmiarek, M.; Sobczyk, K.; Działach, E.; Górski, M.; Kobza, J. The Level of COVID-19 Anxiety among Oncology Patients in Poland. Int. J. Environ. Res. Public Health 2022, 19, 11418. [Google Scholar] [CrossRef]
Age | |
18–35 | 189 (62%) |
36–55 | 64 (21%) |
56–81 | 51 (17%) |
Place of residence | |
Village City of up to 50,000 residents City of 50,000 to 150,000 residents. A city with a population of more than 150,000 | 84 (28%) 51 (17%) 74 (24%) 95 (31%) |
Education | |
Basic | 12 (4%) |
Professional | 32 (11%) |
Medium | 96 (32%) |
Higher | 164 (54%) |
Type of work performed | |
Pensioner | 45 (15%) |
Non-working person | 9 (3%) |
Pupil/student | 65 (21%) |
Mental work | 117 (38%) |
Manual labor | 68 (22%) |
Occupation represented | |
Medical | 50 (16%) |
Non-medical | 176 (59%) |
Not applicable | 75 (25%) |
Variable (N = 304) | Regularity of Intake of Preparations Containing Certain Substances | ||||||
---|---|---|---|---|---|---|---|
Regularly | Irregularly | Don’t Use | Total (%) | T | r | p-Value * | |
Vitamin A | 46 (15.1%) | 34 (11.2%) | 224 (73.7%) | 304 (100%) | 2.677 | 0.001 | p = 0.11277 |
Vitamin C | 102 (33.6%) | 77 (25.3%) | 125 (41.1%) | 1.867 | 0.021 | p = 0.20002 | |
Vitamin D | 140 (46.1%) | 79 (26%) | 85 (28%) | 3.860 | 0.045 | p = 0.81863 | |
Vitamin E | 36 (11.8%) | 36 (11.8%) | 232 (76.3%) | 0.579 | 0.002 | p = 0.82628 | |
Multivitamin | 50 (16.4%) | 61 (20.1%) | 193 (63.5%) | 12.387 | 0.743 | p = 0.04272 * | |
Selenium | 25 (8.2%) | 17 (56%) | 262 (86.2%) | 1.387 | 0.001 | p = 0.73983 | |
Zinc | 46 (15.1%) | 31 (10.5%) | 226 (74.3%) | 303 (99.67%) | 2.370 | 0.001 | p = 0.48279 |
Probiotics | 15 (4.9%) | 45 (14.8%) | 244 (80.3%) | 304 (100%) | 1.654 | 0.031 | p = 0.71194 |
Acids omega-3 | 69 (22.7%) | 70 (23%) | 165 (54.3%) | 2.657 | 0.005 | p = 0.86683 |
Variable | Incidence of Mild or Scanty COVID-19 | ||||||
---|---|---|---|---|---|---|---|
Not (Severe) | Unspecified | Yes (Mild/Scanty) | Total (%) | T | r | p-Value | |
Vitamin A | 10 (21.74%) | 9 (19.57%) | 27 (58.70%) | 46 (100%) | 1.768 | 0.031 | p = 0.87351 |
Vitamin C | 24 (23.53%) | 17 (16.67%) | 61 (59.80%) | 102 (100%) | 11.374 | 0.611 | p = 0.04603 * |
Vitamin D | 32 (22.86%) | 27 (19.29%) | 81 (57.86%) | 140 (100%) | 2.987 | 0.002 | p = 0.35587 |
Vitamin E | 9 (25.00%) | 8 (22.22%) | 19 (52.78%) | 36 (100%) | 2.674 | 0.001 | p = 0.60783 |
Multivitamin | 10 (20.00%) | 6 (12.00%) | 34 (68.00%) | 50 (100%) | 13.456 | 0.711 | p = 0.02191 * |
Selenium | 5 (20.00%) | 5 (20.00%) | 15 (60.00%) | 25 (100%) | 1.785 | 0.011 | p = 0.89731 |
Zinc | 9 (19.57%) | 8 (17.39%) | 29 (63.04%) | 46 (100%) | 0.756 | 0.056 | p = 0.16594 |
Probiotics | 9 (60.00%) | 3 (20.00%) | 3 (20.00%) | 15 (100%) | 0.324 | 0.001 | p = 0.70255 |
Omega-3 acids | 18 (26.09%) | 15 (21.74%) | 36 (52.17%) | 69 (100%) | 0.864 | 0.006 | p = 0.67602 |
Frequency of Consumption of Specific Products | ||||||
---|---|---|---|---|---|---|
Product | Several Times Daily | Once Daily | Several Times a Week | Several Times a Month | Occasionally | Not I Consume |
Red meat, poultry | 14 (4.6%) | 56 (18.4%) | 139 (45.7%) | 64 (21.1%) | 22 (7.2%) | 9 (3%) |
Offal (liver) | 1 (0.3%) | 1 (0.3%) | 5 (1.6%) | 42 (13.8%) | 112 (36.8%) | 143 (47%) |
Fish | 0 (0%) | 4 (1.3%) | 30 (9.9%) | 152 (50%) | 98 (32.2%) | 20 (6.6%) |
Seafood (oysters, crabs, shrimps) | 0 (0%) | 1 (0.3%) | 6 (2%) | 28 (9.2%) | 85 (28%) | 184 (60.5%) |
Eggs | 4 (1.3%) | 22 (7.2%) | 173 (56.9%) | 85 (28%) | 18 (5.9%) | 2 (0.7%) |
Milk and products milky | 49 (16.1%) | 65 (21.4%) | 120 (39.5%) | 44 (14.5%) | 17 (5.6%) | 9 (3%) |
Milk products fermented (buttermilk, kefir) | 4 (1.3%) | 17 (5.6%) | 83 (27.3%) | 82 (27%) | 52 (17.1%) | 66 (21.7%) |
Cheese rennet ripened (yellow cheese) | 9 (3%) | 29 (9.5%) | 118 (38.8%) | 91 (29.9%) | 42 (13.8%) | 15 (4.9%) |
Curd cheeses | 4 (1.3%) | 11 (3.6%) | 108 (35.5%) | 107 (35.2%) | 57 (18.8%) | 17 (5.6%) |
Products whole grains (bread, groats, rice, poppy seeds) | 60 (19.7%) | 65 (21.4%) | 111 (36.5%) | 45 (14.8%) | 20 (6.6%) | 3 (1%) |
Pickles (cabbage, pickled cucumbers) | 3 (1%) | 10 (3.3%) | 68 (22.4%) | 149 (49%) | 59 (19.4%) | 15 (4.9%) |
Citrus fruits (Oranges, lemons, kiwis) | 12 (3.9%) | 23 (7.6%) | 94 (30.9%) | 121 (39.8%) | 47 (15.5%) | 7 (2.3%) |
Vegetables | 118 (38.8%) | 63 (20.7%) | 88 (28.9%) | 24 (7.9%) | 10 (3.3%) | 1 (0.3%) |
Garlic, onion | 16 (5.3%) | 39 (12.8%) | 156 (51.3%) | 48 (15.8%) | 26 (8.6%) | 19 (6.3%) |
Nuts (Brazilian, Italian, pecan, cashews) | 2 (0.7%) | 11 (3.6%) | 74 (24.3%) | 79 (26%) | 104 (34.2%) | 34 (11.2%) |
Seeds, seeds (Sunflower, pumpkin, almonds) | 4 (1.3%) | 8 (2.6%) | 58 (19.1%) | 82 (27%) | 107 (35.2%) | 45 (14.8%) |
Plant seeds Legumes (beans, peas, chickpea) | 0 (0%) | 7 (2.3%) | 32 (10.5%) | 109 (35.9%) | 127 (41.8%) | 29 (9.5%) |
Vegetable fats | 20 (6.6%) | 54 (17.8%) | 121 (39.8%) | 56 (18.4%) | 43 (14.1%) | 10 (3.3%) |
Animal fats | 26 (8.6%) | 56 (18.4%) | 85 (28%) | 49 (16.1%) | 59 (19.4%) | 29 (9.5%) |
Herbs | 47 (15.5%) | 45 (14.8%) | 85 (28%) | 40 (13.2%) | 59 (19.4%) | 28 (9.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa-Kotara, K.; Grajek, M.; Murzyn, A.; Słoma-Krześlak, M.; Sobczyk, K.; Białek-Dratwa, A.; Kowalski, O. Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland). Life 2022, 12, 1976. https://doi.org/10.3390/life12121976
Krupa-Kotara K, Grajek M, Murzyn A, Słoma-Krześlak M, Sobczyk K, Białek-Dratwa A, Kowalski O. Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland). Life. 2022; 12(12):1976. https://doi.org/10.3390/life12121976
Chicago/Turabian StyleKrupa-Kotara, Karolina, Mateusz Grajek, Anna Murzyn, Małgorzata Słoma-Krześlak, Karolina Sobczyk, Agnieszka Białek-Dratwa, and Oskar Kowalski. 2022. "Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland)" Life 12, no. 12: 1976. https://doi.org/10.3390/life12121976
APA StyleKrupa-Kotara, K., Grajek, M., Murzyn, A., Słoma-Krześlak, M., Sobczyk, K., Białek-Dratwa, A., & Kowalski, O. (2022). Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland). Life, 12(12), 1976. https://doi.org/10.3390/life12121976