A Rising Star of the Multimarker Panel: Growth Differentiation Factor-15 Levels Are an Independent Predictor of Mortality in Acute Heart Failure Patients Admitted to an Emergency Clinical Hospital from Eastern Europe
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Patients, and Investigations
2.2. Statistical Analysis
2.3. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Multimarker Panel
3.3. Diagnostic Performance of GDF-15
3.4. Multimarker Approach
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- van Riet, E.E.; Hoes, A.W.; Wagenaar, K.P.; Limburg, A.; Landman, M.A.; Rutten, F.H. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 2016, 18, 242–252. [Google Scholar] [CrossRef]
- Christiansen, M.N.; Køber, L.; Torp-Pedersen, C.; Gislason, G.H.; Schou, M.; Smith, J.G.; Vasan, R.S.; Andersson, C. Preheart failure comorbidities and impact on prognosis in heart failure patients: A nationwide study. J. Intern. Med. 2020, 287, 698–710. [Google Scholar] [CrossRef]
- Urban, S.; Błaziak, M.; Jura, M.; Iwanek, G.; Zdanowicz, A.; Guzik, M.; Borkowski, A.; Gajewski, P.; Biegus, J.; Siennicka, A.; et al. Novel Phenotyping for Acute Heart Failure-Unsupervised Machine Learning-Based Approach. Biomedicines 2022, 10, 1514. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5, 15. [Google Scholar] [CrossRef]
- Miftode, R.-S.; Costache, I.-I.; Cianga, P.; Petris, A.O.; Cianga, C.-M.; Maranduca, M.-A.; Miftode, I.-L.; Constantinescu, D.; Timpau, A.-S.; Crisan, A.; et al. The Influence of Socioeconomic Status on the Prognosis and Profile of Patients Admitted for Acute Heart Failure during COVID-19 Pandemic: Overestimated Aspects or a Multifaceted Hydra of Cardiovascular Risk Factors? Healthcare 2021, 9, 1700. [Google Scholar] [CrossRef]
- Badianyama, M.; Mpanya, D.; Adamu, U.; Sigauke, F.; Nel, S.; Tsabedze, N. New Biomarkers and Their Potential Role in Heart Failure Treatment Optimisation—An African Perspective. J. Cardiovasc. Dev. Dis. 2022, 9, 335. [Google Scholar] [CrossRef]
- Chan, M.M.; Santhanakrishnan, R.; Chong, J.P.; Chen, Z.; Tai, B.C.; Liew, O.W.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.; et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2016, 18, 81–88. [Google Scholar] [CrossRef]
- George, M.; Jena, A.; Srivatsan, V.; Muthukumar, R.; Dhandapani, V.E. GDF 15-A Novel Biomarker in the Offing for Heart Failure. Curr. Cardiol. Rev. 2016, 12, 37–46. [Google Scholar] [CrossRef]
- Lok, D.J.; Klip, I.T.; Lok, S.I.; de la Porte, P.W.B.-A.; Badings, E.; van Wijngaarden, J.; Voors, A.A.; de Boer, R.A.; van Veldhuisen, D.J.; van der Meer, P. Incremental prognostic power of novel biomarkers (growth-differentiation factor-15, high-sensitivity C-reactive protein, galectin-3, and high-sensitivity troponin-T) in patients with advanced chronic heart failure. Am. J. Cardiol. 2013, 112, 831–837. [Google Scholar] [CrossRef]
- Biasucci, L.M.; Maino, A.; Grimaldi, M.C.; Cappannoli, L.; Aspromonte, N. Novel Biomarkers in Heart Failure: New Insight in Pathophysiology and Clinical Perspective. J. Clin. Med. 2021, 10, 2771. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 2018, 7, e008108. [Google Scholar] [CrossRef]
- May, B.M.; Pimentel, M.; Zimerman, L.I.; Rohde, L.E. GDF-15 as a Biomarker in Cardiovascular Disease. Arq. Bras. Cardiol. 2021, 116, 494–500. [Google Scholar]
- Min, K.W.; Liggett, J.L.; Silva, G.; Wu, W.W.; Wang, R.; Shen, R.F.; Eling, T.E.; Baek, S.J. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene 2016, 35, 377–388. [Google Scholar] [CrossRef]
- Baek, S.J.; Eling, T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol. Ther. 2019, 198, 46–58. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Gao, W. Growth differentiation factor 15 in cardiovascular diseases: From bench to bedside. Biomarkers 2011, 16, 466–475. [Google Scholar] [CrossRef]
- Breit, S.N.; Johnen, H.; Cook, A.D.; Tsai, V.W.; Mohammad, M.G.; Kuffner, T.; Zhang, H.P.; Marquis, C.P.; Jiang, L.; Lockwood, G.; et al. The TGF-β superfamily cytokine, MIC-1/GDF15: A pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 2011, 29, 187–195. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- WHO. Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information System. WHO/NMH/NHD/MNM/11.1. World Health Organization: Geneva, Switzerland. 2011. Available online: http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 14 November 2022).
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef]
- Camps-Vilaró, A.; Delgado-Jiménez, J.F.; Farré, N.; Tizón-Marcos, H.; Álvarez-García, J.; Cinca, J.; Dégano, I.R.; Marrugat, J. Estimated Population Prevalence of Heart Failure with Reduced Ejection Fraction in Spain, According to DAPA-HF Study Criteria. J. Clin. Med. 2020, 9, 2089. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Jirak, P.; Pistulli, R.; Lichtenauer, M.; Wernly, B.; Paar, V.; Motloch, L.J.; Rezar, R.; Jung, C.; Hoppe, U.C.; Schulze, P.C.; et al. Expression of the Novel Cardiac Biomarkers sST2, GDF-15, suPAR, and H-FABP in HFpEF Patients Compared with ICM, DCM, and Controls. J. Clin. Med. 2020, 9, 1130. [Google Scholar] [CrossRef]
- Villacorta, H.; Maisel, A.S. Soluble st2 testing: A promising biomarker in the management of heart failure. Arq. Bras. Cardiol. 2016, 106, 145–152. [Google Scholar] [CrossRef]
- Miftode, R.-S.; Constantinescu, D.; Cianga, C.M.; Petris, A.O.; Timpau, A.-S.; Crisan, A.; Costache, I.-I.; Mitu, O.; Anton-Paduraru, D.-T.; Miftode, I.-L.; et al. A Novel Paradigm Based on ST2 and Its Contribution towards a Multimarker Approach in the Diagnosis and Prognosis of Heart Failure: A Prospective Study during the Pandemic Storm. Life 2021, 11, 1080. [Google Scholar] [CrossRef]
- Kempf, T.; von Haehling, S.; Peter, T.; Allhoff, T.; Cicoira, M.; Doehner, W.; Ponikowski, P.; Filippatos, G.S.; Rozentryt, P.; Drexler, H.; et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007, 50, 1054–1060. [Google Scholar] [CrossRef]
- Santhanakrishnan, R.; Chong, J.P.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.; Yeo, P.S.; Ong, H.Y.; Jaufeerally, F.; Wong, R.; et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2012, 14, 1338–1347. [Google Scholar] [CrossRef]
- Luo, J.W.; Duan, W.H.; Song, L.; Yu, Y.Q.; Shi, D.Z. A Meta-Analysis of Growth Differentiation Factor-15 and Prognosis in Chronic Heart Failure. Front. Cardiovasc. Med. 2021, 8, 630818. [Google Scholar] [CrossRef]
- Wesseling, M.; de Poel, J.H.C.; de Jager, S.C.A. Growth differentiation factor 15 in adverse cardiac remodelling: From biomarker to causal player. ESC Heart Fail. 2020, 7, 1488–1501. [Google Scholar] [CrossRef]
- Méloux, A.; Rochette, L.; Maza, M.; Bichat, J.C.; Beer, F.; Chagué, F.; Cottin, Y.; Zeller, M.; Vergely-Vandriesse, C. Growth differentiation factor 15 as an integrative biomarker of heart failure in patients with acute myocardial infarction. Arch Cardiovasc. Dis. 2019, 11, 239–240. [Google Scholar]
- Lok, S.I.; Winkens, B.; Goldschmeding, R.; van Geffen, A.J.; Nous, F.M.; van Kuik, J.; van der Weide, P.; Klopping, C.; Kirkels, J.H.; Lahpor, J.R.; et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur. J. Heart Fail. 2012, 14, 1249–1256. [Google Scholar] [CrossRef]
- Nair, N.; Gongora, E. Correlations of GDF-15 with sST2, MMPs, and worsening functional capacity in idiopathic dilated cardiomyopathy: Can we gain new insights into the pathophysiology? J. Circ. Biomark. 2018, 7, 1849454417751735. [Google Scholar] [CrossRef]
- Rochette, L.; Dogon, G.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int. J. Mol. Sci. 2021, 22, 8889. [Google Scholar] [CrossRef] [PubMed]
- Mornos, C.; Petrescu, L.; Cozma, D.; Ionac, A. A new tissue Doppler index to predict cardiac death in patients with heart failure. Arq. Bras. Cardiol. 2014, 102, 19–29. [Google Scholar] [CrossRef]
- Vairappan, B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J. Hepatol. 2015, 7, 443–459. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.; Zhang, W.; Hua, H.; Wang, N.; Zhao, J.; Ge, J.; Jiang, X.; Zhang, Z.; Ye, D.; et al. Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Sci. Rep. 2017, 7, 9027. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.H.; Jeong, J.H.; Park, M.; Kim, K.S. GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells. Oncotarget 2016, 7, 9634–9644. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Li, Y.; Gong, K.; Xiao, L.; Fu, H.; Yang, J.; Wang, X.; Meng, Q. GDF-15 Suppresses Atherosclerosis by Inhibiting oxLDL-Induced Lipid Accumulation and Inflammation in Macrophages. Evid. Based Complement. Alternat. Med. 2021, 2021, 6497568. [Google Scholar] [CrossRef]
- Ackermann, K.; Bonaterra, G.A.; Kinscherf, R.; Schwarz, A. Growth differentiation factor-15 regulates oxLDL-induced lipid homeostasis and autophagy in human macrophages. Atherosclerosis 2019, 281, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Al Aseri, Z.A.; Habib, S.S.; Marzouk, A. Predictive value of high sensitivity C-reactive protein on progression to heart failure occurring after the first myocardial infarction. Vasc. Health Risk Manag. 2019, 15, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, I.; Wong, M.V.; Hung, J.; Gong, M.; Waleed, K.B.; Xia, Y.; Lee, S.; Roever, L.; Liu, T.; Tse, G.; et al. Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart Fail. Rev. 2021, 26, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Timpau, A.S.; Miftode, R.; Petris, A.O.; Costache, I.I.; Miftode, I.L.; Rosu, F.M.; Anton-Paduraru, D.T.; Leca, D.; Miftode, E.G. Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic. J. Clin. Med. 2021, 11, 58. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef]
- Huang, F.Y.; Wang, H.; Huang, B.T.; Liu, W.; Peng, Y.; Zhang, C.; Xia, T.-L.; Wang, P.-J.; Zuo, Z.-L.; Heng, Y.; et al. The influence of body composition on the N-terminal pro-B-type natriuretic peptide level and its prognostic performance in patients with acute coronary syndrome: A cohort study. Cardiovasc. Diabetol. 2016, 15, 58. [Google Scholar] [CrossRef]
- Timpau, A.-S.; Miftode, R.-S.; Leca, D.; Timpau, R.; Miftode, I.-L.; Petris, A.O.; Costache, I.I.; Mitu, O.; Nicolae, A.; Oancea, A.; et al. A Real Pandora’s Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. Life 2022, 12, 1085. [Google Scholar] [CrossRef]
- Miftode, E.; Luca, C.; Manciuc, C.; Vâță, A.; Hunea, I.; Miftode, L.; Bădescu, A.; Dorneanu, O. COVID-19: A Course Through Stormy Waters. Med. Surg. J. Rev. Med. Chir. 2020, 124, 351–362. [Google Scholar]
- Lionte, C.; Sorodoc, V.; Haliga, R.E.; Bologa, C.; Ceasovschih, A.; Petris, O.R.; Coman, A.E.; Stoica, A.; Sirbu, O.; Puha, G.; et al. Inflammatory and Cardiac Biomarkers in Relation with Post-Acute COVID-19 and Mortality: What We Know after Successive Pandemic Waves. Diagnostics 2022, 12, 1373. [Google Scholar] [CrossRef]
- Anand, I.S.; Kempf, T.; Rector, T.S.; Tapken, H.; Allhoff, T.; Jantzen, F.; Kuskowski, M.; Cohn, J.N.; Drexler, H.; Wollert, K.C. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the valsartan heart failure trial. Circulation 2010, 122, 1387–1395. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Claggett, B.; Zile, M.R.; McMurray, J.J.V.; O’Meara, E.; Packer, M.; Prescott, M.F.; Swedberg, K.; Solomon, S.D.; Rouleau, J.L. PARADIGM-HF Investigators and Committees. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: The PARADIGM-HF trial. Eur. J. Heart Fail. 2018, 20, 1701–1709. [Google Scholar] [CrossRef]
- Eggers, K.M.; Kempf, T.; Wallentin, L.; Wollert, K.C.; Lind, L. Change in growth differentiation factor 15 concentrations over time independently predicts mortality in community-dwelling elderly individuals. Clin. Chem. 2013, 59, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, P.; Cunha, F.M.; Ferreira-Coimbra, J.; Barroso, I.; Guimarães, J.T.; Bettencourt, P. Dynamics of growth differentiation factor 15 in acute heart failure. ESC Heart Fail. 2021, 8, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Morrow, D.A.; Braunwald, E.; Cannon, C.P.; Jiang, S.; Breher, S.; Sabatine, M.S.; Kempf, T.; Wallentin, L.; Wollert, K.C. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: Observations from PROVE IT-TIMI 22. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Mueller, T.; Januzzi, J.L. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008, 52, 1458–1465. [Google Scholar] [CrossRef]
- Grande, D.; Leone, M.; Rizzo, C.; Terlizzese, P.; Parisi, G.; Gioia, M.I.; Leopizzi, T.; Segreto, A.; Guida, P.; Romito, R.; et al. A Multiparametric Approach Based on NT-proBNP, ST2, and Galectin3 for Stratifying One Year Prognosis of Chronic Heart Failure Outpatients. J. Cardiovasc. Dev. Dis. 2017, 4, 9. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Curinier, C.; Kuster, N.; Huet, F.; Leclercq, F.; Davy, J.M.; Cristol, J.P.; Roubille, F. Multi-Marker Strategy in Heart Failure: Combination of ST2 and CRP Predicts Poor Outcome. PLoS ONE 2016, 11, e0157159. [Google Scholar] [CrossRef]
- Hao, J.; Cheang, I.; Zhang, L.; Wang, K.; Wang, H.M.; Wu, Q.Y.; Zhou, Y.L.; Zhou, F.; Xu, D.J.; Zhang, H.F.; et al. Growth differentiation factor-15 combined with N-terminal prohormone of brain natriuretic peptide increase 1-year prognosis prediction value for patients with acute heart failure: A prospective cohort study. Chin. Med. J. 2019, 132, 2278–2285. [Google Scholar] [CrossRef]
- Wettersten, N.; Maisel, A. Role of Cardiac Troponin Levels in Acute Heart Failure. Card. Fail. Rev. 2015, 1, 102–106. [Google Scholar] [CrossRef]
- Gherasim, L. Troponins in Heart Failure–a Perpetual Challenge. Maedica 2019, 14, 371–377. [Google Scholar]
- Mehra, M.R.; Uber, P.A.; Park, M.H.; Scott, R.L.; Ventura, H.O.; Harris, B.C.; Frohlich, E.D. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J. Am. Coll. Cardiol. 2004, 43, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (N = 173) | Acute HF (N = 120) | Control Group (N = 53) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Mean ± STD | Max | Min | Mean ± STD | Max | Min | Mean ± STD | Max | ||
Age (years) | 18 | 65 ± 13.3 | 94 | 18 | 66.4 ± 15.3 | 94 | 30 | 64 ± 11.9 | 85 | 0.526 |
Mortality rate: N (%) | 21 (12.1%) | 21 (17.5%) | 0 (0%) | <0.001 | ||||||
Gender | 0.438 | |||||||||
Male: N, (%) | 104 (60%) | 71 (59.20%) | 33 (62.30%) | |||||||
Female: N, (%) | 69 (40%) | 49 (40.80%) | 20 (37.70%) | |||||||
Smoking: N, (%) | 67 (38.7%) | 48 (40%) | 19 (35.8%) | 0.605 | ||||||
Alcohol abuse: N, (%) | 97 (56.1%) | 75 (62.5%) | 22 (41.5%) | 0.012 | ||||||
Arterial hypertension: N, (%) | 94 (54.3%) | 60 (50%) | 34 (64.2%) | 0.085 | ||||||
Ischemic heart disease: N, (%) | 76 (43.9%) | 59 (49.2%) | 17 (32%) | 0.037 | ||||||
Diabetes mellitus N, (%) | 29 (16.8%) | 22 (18.3%) | 7 (13.2%) | 0.406 | ||||||
Obesity (BMI > 30 kg/m2): N, (%) | 49 (28.3%) | 42 (35%) | 7 (13.2%) | 0.003 | ||||||
Anemia N, (%) | 47 (27.2%) | 35 (29.2%) | 12 (22.7%) | 0.377 | ||||||
COVID-19: N, (%) | 13 (7.5%) | 8 (6.7%) | 5 (9.4%) | 0.241 |
Total (N = 173) | Acute HF (N = 120) | Control Group (N = 53) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristics | Min | Mean ± STD | Max | Min | Mean ± STD | Max | Min | Mean ± STD | Max | |
LV ejection fraction (%) | 10% | 39.4 ± 14.4 | 72% | 10% | 33.8 ± 13.9% | 61 % | 38% | 52.2 ± 15.7 | 72% | 0.017 |
LV end-diastolic diameter (mm) N, (%) | 30 | 52.7 ± 8.2 | 75 | 32 | 55.1 ± 8.6 | 75 | 30 | 47.3 ± 7.7 | 63 | 0.033 |
Hemoglobin (g/dL) | 7.20 | 13.3 ± 2.1 | 33.7 | 7.20 | 13.2 ± 2.4 | 33.7 | 9.60 | 13.5 ± 1.9 | 18.40 | 0.069 |
Hematocrit (%) | 22.20 | 39.5 ± 9.7 | 56.3 | 22.20 | 39.5 ± 8.9 | 56.3 | 29.2 | 39.4 ± 11.2 | 52.70 | 0.909 |
Leukocytes (×109/L) | 1.20 | 9.5 ± 1.3 | 30.2 | 4.10 | 10.2 ± 1.34 | 25.2 | 1.2 | 7.9 ± 1.2 | 30.18 | 0.044 |
Platelets (×103/μL) | 37 | 266 ± 43 | 2630 | 37 | 270 ± 45 | 2630 | 37 | 253 ± 42 | 595 | 0.245 |
Blood glucose (mg/dL) | 63 | 142.5 ± 37.1 | 582 | 63 | 149.2 ± 33.4 | 582 | 73 | 128.1 ± 41.8 | 388 | 0.111 |
Total bilirubin (mg/dL) | 0.09 | 1 ± 0.2 | 5.02 | 0.10 | 1.2 ± 0.2 | 5.02 | 0.1 | 0.5 ± 0.2 | 1.12 | <0.001 |
Sodium (mmol/L) | 121 | 138.3 ± 12.6 | 147 | 121 | 137.8 ± 14.1 | 147 | 122 | 141.1 ± 8.5 | 147 | 0.002 |
Potassium (mmol/L) | 2.90 | 4.5 ± 0.8 | 6.3 | 2.90 | 4.6 ± 0.9 | 6.30 | 3.20 | 4.3 ± 0.7 | 5.60 | 0.009 |
Creatinine (mg/dL) | 0.60 | 1.2 ± 0.3 | 4.0 | 0.60 | 1.2 ± 0.3 | 4.01 | 0.7 | 1 ± 0.2 | 3.78 | 0.029 |
Total cholesterol (mg/dL) | 63 | 164.2 ± 51.2 | 331 | 63 | 161.1 ± 51.9 | 331 | 90 | 173.3 ± 49.3 | 285 | 0.109 |
LDL-cholesterol (mg/dL) | 33 | 109.2 ± 33.4 | 255 | 33 | 106.6 ± 35.6 | 255 | 53 | 124.6 ± 31.2 | 197 | 0.253 |
HDL-cholesterol (mg/dL) | 12 | 41.7 ± 16.5 | 111 | 12 | 40 ± 15.9 | 111 | 36 | 52.4 ± 17.7 | 76 | <0.001 |
Beta-blockers | 148 (85.6%) | 99 (82.5%) | 49 (92.5%) | 0.087 | ||||||
Inhibitors of the RAS | 121 (70%) | 77 (64.2%) | 44 (83.1%) | 0.012 | ||||||
Loop-diuretics | 119 (68.8%) | 102 (85%) | 17 (32.1%) | <0.001 | ||||||
Mineralocorticoid receptor antagonist | 92 (53.2%) | 83 (69.2%) | 9 (17%) | <0.001 |
Biomarker | Total = 173 | Acute HF = 120 | Controls = 53 | p-Value |
---|---|---|---|---|
GDF-15 (ng/L) | 439 (199–786) | 596 (305–904) | 216 (139–305) | <0.01 |
NT-proBNP (pg/mL) | 3757 (1827–9764) | 5440 (2812–12791) | 107.80 (41.30–325.25) | <0.01 |
hs-Troponin (ng/L) | 31.01 (7.03–104.80) | 38.25 (12.45–179.50) | 2.26 (1.14–5.43) | <0.01 |
Parameter | GDF−15 | |
---|---|---|
r | p−Value | |
LVEF | −0.117 | 0.125 |
LVEDD | −0.021 | 0.873 |
LAVI | 0.142 | 0.085 |
E/e’ | 0.191 | 0.038 |
sPAP | 0.188 | 0.046 |
NT−proBNP | 0.264 | 0.004 |
hs−Troponin | 0.035 | 0.752 |
C−reactive protein | 0.177 | 0.047 |
Hemoglobin | −0.095 | 0.101 |
Leukocytes | 0.065 | 0.468 |
Serum creatinine | 0.224 | 0.014 |
Sodium | −0.250 | 0.006 |
Potassium | 0.165 | 0.03 |
Total bilirubin | 0.376 | <0.001 |
ALT | 0.188 | 0.035 |
AST | 0.302 | <0.001 |
Total cholesterol | −0.423 | <0.001 |
LDL−cholesterol | −0.370 | <0.001 |
HDL−cholesterol | −0.242 | 0.011 |
BMI | −0.051 | 0.579 |
Age | 0.166 | 0.07 |
Male gender | 0.089 | 0.332 |
Alcohol abuse | −0.018 | 0.844 |
Smoking | 0.070 | 0.499 |
Diabetes mellitus | 0.170 | 0.063 |
Arterial hypertension | −0.056 | 0.545 |
Ischemic heart disease | 0.016 | 0.861 |
Systolic blood pressure | −0.194 | 0.035 |
Diastolic blood pressure | −0.157 | 0.061 |
Heart rate | −0.031 | 0.755 |
Pulmonary crackles | 0.306 | <0.001 |
Peripheral edema | 0.316 | <0.001 |
Lactate level | 0.301 | <0.001 |
Inotropic support | 0.256 | 0.005 |
Length of hospital stay | 0.189 | 0.042 |
In−hospital mortality | 0.283 | <0.001 |
30−days mortality | 0.375 | <0.001 |
BIOMARKER | AUC | Std. Error | Asymptotic 95% Confidence Interval | p-Value | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
GDF-15 (ng/L) | 0.883 | 0.028 | 0.828 | 0.938 | <0.01 |
NT-proBNP (pg/mL) | 0.976 | 0.013 | 0.952 | 1.000 | <0.01 |
hs-Troponin (ng/L) | 0.839 | 0.054 | 0.733 | 0.944 | <0.01 |
Criterion | Concentration (ng/L) | Se | Sp |
---|---|---|---|
Se = Sp | 306 | 0.750 | 0.755 |
Youden’s index (max Se + Sp) | 314 | 0.750 | 0.776 |
High-mortality risk cut-off | 618 | 0.483 | 0.867 |
Chi-Square | df | p-Value | |
---|---|---|---|
Log Rank (Mantel-Cox) | 7.075 | 1 | 0.008 |
Test of equality of survival distributions for the different levels of GDF-15. |
Biomarkers | GDF-15 < 596 ng/L | GDF-15 > 596 ng/L | p-Value | |
---|---|---|---|---|
Mortality (%) | ||||
NT-proBNP < 5440 pg/mL | 7.3% | 25% | <0.01 | |
NT-proBNP > 5440 pg/mL | 10.5% | 40% | <0.01 |
Model | R | R2 | Adjusted R2 | Std. Error of the Estimate | p-Value | Durbin-Watson |
---|---|---|---|---|---|---|
0.375 a | 0.141 | 0.133 | 0.385 | <0.001 | ||
1 | 0.438 b | 0.192 | 0.178 | 0.375 | <0.001 | |
2 | 0.451 c | 0.203 | 0.183 | 0.374 | <0.001 | 1.822 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miftode, R.-S.; Constantinescu, D.; Cianga, C.-M.; Petris, A.-O.; Costache, I.-I.; Mitu, O.; Miftode, I.-L.; Mitu, I.; Timpau, A.-S.; Duca, S.-T.; et al. A Rising Star of the Multimarker Panel: Growth Differentiation Factor-15 Levels Are an Independent Predictor of Mortality in Acute Heart Failure Patients Admitted to an Emergency Clinical Hospital from Eastern Europe. Life 2022, 12, 1948. https://doi.org/10.3390/life12121948
Miftode R-S, Constantinescu D, Cianga C-M, Petris A-O, Costache I-I, Mitu O, Miftode I-L, Mitu I, Timpau A-S, Duca S-T, et al. A Rising Star of the Multimarker Panel: Growth Differentiation Factor-15 Levels Are an Independent Predictor of Mortality in Acute Heart Failure Patients Admitted to an Emergency Clinical Hospital from Eastern Europe. Life. 2022; 12(12):1948. https://doi.org/10.3390/life12121948
Chicago/Turabian StyleMiftode, Radu-Stefan, Daniela Constantinescu, Corina-Maria Cianga, Antoniu-Octavian Petris, Irina-Iuliana Costache, Ovidiu Mitu, Ionela-Larisa Miftode, Ivona Mitu, Amalia-Stefana Timpau, Stefania-Teodora Duca, and et al. 2022. "A Rising Star of the Multimarker Panel: Growth Differentiation Factor-15 Levels Are an Independent Predictor of Mortality in Acute Heart Failure Patients Admitted to an Emergency Clinical Hospital from Eastern Europe" Life 12, no. 12: 1948. https://doi.org/10.3390/life12121948
APA StyleMiftode, R.-S., Constantinescu, D., Cianga, C.-M., Petris, A.-O., Costache, I.-I., Mitu, O., Miftode, I.-L., Mitu, I., Timpau, A.-S., Duca, S.-T., Costache, A.-D., Cianga, P., & Serban, I.-L. (2022). A Rising Star of the Multimarker Panel: Growth Differentiation Factor-15 Levels Are an Independent Predictor of Mortality in Acute Heart Failure Patients Admitted to an Emergency Clinical Hospital from Eastern Europe. Life, 12(12), 1948. https://doi.org/10.3390/life12121948